Regulation of cytokine signaling through direct interaction between cytokine receptors and the ATG16L1 WD40 domain

[1]  N. Ktistakis,et al.  Targeting of early endosomes by autophagy facilitates EGFR recycling and signalling , 2019, EMBO reports.

[2]  D. Green,et al.  LC3-Associated Endocytosis Facilitates β-Amyloid Clearance and Mitigates Neurodegeneration in Murine Alzheimer’s Disease , 2019, Cell.

[3]  G. Kroemer,et al.  Biological Functions of Autophagy Genes: A Disease Perspective , 2019, Cell.

[4]  O. Florey,et al.  The ATG5-binding and coiled coil domains of ATG16L1 maintain autophagy and tissue homeostasis in mice independently of the WD domain required for LC3-associated phagocytosis , 2018, Autophagy.

[5]  J. Debnath,et al.  Beyond self-eating: The control of nonautophagic functions and signaling pathways by autophagy-related proteins , 2018, The Journal of cell biology.

[6]  P. Zandstra,et al.  Convenience versus Biological Significance: Are PMA-Differentiated THP-1 Cells a Reliable Substitute for Blood-Derived Macrophages When Studying in Vitro Polarization? , 2018, Front. Pharmacol..

[7]  S. Tooze,et al.  Autophagy pathway: Cellular and molecular mechanisms , 2018, Autophagy.

[8]  O. Florey,et al.  The WD40 domain of ATG16L1 is required for its non‐canonical role in lipidation of LC3 at single membranes , 2018, The EMBO journal.

[9]  R. Xavier,et al.  Genetic control of autophagy underlies pathogenesis of inflammatory bowel disease , 2017, Mucosal Immunology.

[10]  P. Codogno,et al.  Autophagy: A Druggable Process. , 2017, Annual review of pharmacology and toxicology.

[11]  M. Miączyńska,et al.  Endocytic regulation of cytokine receptor signaling. , 2016, Cytokine & growth factor reviews.

[12]  D. Rubinsztein,et al.  Mammalian Autophagy: How Does It Work? , 2016, Annual review of biochemistry.

[13]  R. Xavier,et al.  The T300A Crohn's disease risk polymorphism impairs function of the WD40 domain of ATG16L1 , 2016, Nature Communications.

[14]  J. Mes,et al.  THP-1 cell line: an in vitro cell model for immune modulation approach. , 2014, International immunopharmacology.

[15]  F. X. Pimentel-Muiños,et al.  Selective autophagy against membranous compartments , 2014, Autophagy.

[16]  R. Xavier,et al.  Atg16l1 is required for autophagy in intestinal epithelial cells and protection of mice from Salmonella infection. , 2013, Gastroenterology.

[17]  D. Philpott,et al.  The protein ATG16L1 suppresses inflammatory cytokines induced by the intracellular sensors Nod1 and Nod2 in an autophagy-independent manner. , 2013, Immunity.

[18]  F. Reggiori,et al.  Hidden Behind Autophagy: The Unconventional Roles of ATG Proteins , 2013, Traffic.

[19]  J. Messer,et al.  The Crohn's disease: associated ATG16L1 variant and Salmonella invasion , 2013, BMJ Open.

[20]  K. Pallauf,et al.  TMEM59 defines a novel ATG16L1‐binding motif that promotes local activation of LC3 , 2013, The EMBO journal.

[21]  H. Virgin,et al.  Autophagy proteins regulate the secretory component of osteoclastic bone resorption. , 2011, Developmental cell.

[22]  N. Mizushima,et al.  The role of Atg proteins in autophagosome formation. , 2011, Annual review of cell and developmental biology.

[23]  R. Xavier,et al.  Genetics and pathogenesis of inflammatory bowel disease , 2011, Nature.

[24]  Zvulun Elazar,et al.  LC3 and GATE-16 N termini mediate membrane fusion processes required for autophagosome biogenesis. , 2011, Developmental cell.

[25]  D. Rubinsztein,et al.  Plasma membrane contributes to the formation of pre-autophagosomal structures , 2010, Nature Cell Biology.

[26]  D. Klionsky,et al.  Regulation mechanisms and signaling pathways of autophagy. , 2009, Annual review of genetics.

[27]  S. Akira,et al.  Differential Involvement of Atg16L1 in Crohn Disease and Canonical Autophagy , 2009, The Journal of Biological Chemistry.

[28]  S. Akira,et al.  Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production , 2008, Nature.

[29]  Sarah L. Brown,et al.  A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells , 2008, Nature.

[30]  T. Noda,et al.  The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. , 2008, Molecular biology of the cell.

[31]  Daniel J. Klionsky,et al.  Autophagy fights disease through cellular self-digestion , 2008, Nature.

[32]  F. Inagaki,et al.  The Atg12-Atg5 Conjugate Has a Novel E3-like Activity for Protein Lipidation in Autophagy* , 2007, Journal of Biological Chemistry.

[33]  D. Green,et al.  Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis , 2007, Nature.

[34]  Judy H Cho,et al.  Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis , 2007, Nature Genetics.

[35]  Thomas Lengauer,et al.  A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1 , 2007, Nature Genetics.

[36]  S. Akira,et al.  IL-10-inducible Bcl-3 negatively regulates LPS-induced TNF-α production in macrophages , 2003 .

[37]  T. Natsume,et al.  Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate , 2003, Journal of Cell Science.

[38]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[39]  R. Klausen,et al.  Selective , 2020, Encyclopedia of the UN Sustainable Development Goals.

[40]  C. Klein,et al.  Interleukin 10 receptor signaling: master regulator of intestinal mucosal homeostasis in mice and humans. , 2014, Advances in immunology.

[41]  Thomas D. Schmittgen,et al.  Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2 2 DD C T Method , 2022 .