On mesh restrictions to satisfy comparison principles, maximum principles, and the non-negative constraint: Recent developments and new results

ABSTRACT This article concerns mesh restrictions that are needed to satisfy several important mathematical properties—maximum principles, comparison principles, and the nonnegative constraint—for a general linear second-order elliptic partial differential equation. We critically review some recent developments in the field of discrete maximum principles, derive new results, and discuss some possible future research directions in this area. In particular, we derive restrictions for a three-node triangular (T3) element and a four-node quadrilateral (Q4) element to satisfy comparison principles, maximum principles, and the nonnegative constraint under the standard single-field Galerkin formulation. Analysis is restricted to uniformly elliptic linear differential operators in divergence form with Dirichlet boundary conditions specified on the entire boundary of the domain. Various versions of maximum principles and comparison principles are discussed in both continuous and discrete settings. In the literature, it is well-known that an acute-angled triangle is sufficient to satisfy the discrete weak maximum principle for pure isotropic diffusion. Herein, we show that this condition can be either too restrictive or not sufficient to satisfy various discrete principles when one considers anisotropic diffusivity, advection velocity field, or linear reaction coefficient. Subsequently, we derive appropriate restrictions on the mesh for simplicial (e.g., T3 element) and nonsimplicial (e.g., Q4 element) elements. Based on these conditions, an iterative algorithm is developed to construct simplicial meshes that preserve discrete maximum principles using existing open source mesh generators. Various numerical examples based on different types of triangulations are presented to show the pros and cons of placing restrictions on a computational mesh. We also quantify local and global mass conservation errors using representative numerical examples and illustrate the performance of metric.

[1]  E. Sudicky,et al.  Three-dimensional analysis of variably-saturated flow and solute transport in discretely-fractured porous media , 1996 .

[2]  Harsha Nagarajan,et al.  Enforcing the non‐negativity constraint and maximum principles for diffusion with decay on general computational grids , 2010, ArXiv.

[3]  Tomáš Vejchodský,et al.  A weak discrete maximum principle for hp-FEM , 2007 .

[4]  Weizhang Huang,et al.  Metric tensors for anisotropic mesh generation , 2005 .

[5]  O. C. Zienkiewicz,et al.  The Finite Element Method: Its Basis and Fundamentals , 2005 .

[6]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis , 1974 .

[7]  Sergey Korotov,et al.  Discrete maximum principles for finite element solutions of nonlinear elliptic problems with mixed boundary conditions , 2005, Numerische Mathematik.

[8]  A. Russo,et al.  New perspectives on polygonal and polyhedral finite element methods , 2014 .

[9]  Maruti Kumar Mudunuru,et al.  A numerical framework for diffusion-controlled bimolecular-reactive systems to enforce maximum principles and the non-negative constraint , 2012, J. Comput. Phys..

[10]  Charles N. Delzell,et al.  Positive Polynomials: From Hilbert’s 17th Problem to Real Algebra , 2001 .

[11]  Miklós E. Mincsovics,et al.  On the Differences of the Discrete Weak and Strong Maximum Principles for Elliptic Operators , 2011, LSSC.

[12]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[13]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[14]  Pierre Alliez,et al.  Anisotropic polygonal remeshing , 2003, ACM Trans. Graph..

[15]  Nianyu Yi,et al.  Anisotropic mesh generation methods based on ACVT and natural metric for anisotropic elliptic equation , 2013 .

[16]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[17]  Daniil Svyatskiy,et al.  Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes , 2007, J. Comput. Phys..

[18]  V. Kondratiev,et al.  Elliptic Boundary Value Problems of Second Order in Piecewise Smooth Domains , 2006 .

[19]  Tadeusz Styś,et al.  A discrete maximum principle , 1981 .

[20]  Cecile Dobrzynski,et al.  MMG3D: User Guide , 2012 .

[21]  Paul Steinmann,et al.  The Adaptive Delaunay Tessellation: a neighborhood covering meshing technique , 2008 .

[22]  Mariette Yvinec,et al.  From Segmented Images to Good Quality Meshes Using Delaunay Refinement , 2009, ETVC.

[23]  Peter C. Jurs,et al.  Mathematica , 2019, J. Chem. Inf. Comput. Sci..

[24]  Ross Taylor,et al.  Multicomponent mass transfer , 1993 .

[25]  Christophe Le Potier,et al.  A nonlinear finite volume scheme satisfying maximum and minimum principles for diffusion operators , 2009 .

[26]  Hans D. Mittelmann,et al.  Some remarks on the discrete maximum-principle for finite elements of higher order , 1981, Computing.

[27]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[28]  Christophe Le Potier,et al.  Schéma volumes finis monotone pour des opérateurs de diffusion fortement anisotropes sur des maillages de triangles non structurés , 2005 .

[29]  Jérôme Droniou,et al.  Construction and Convergence Study of Schemes Preserving the Elliptic Local Maximum Principle , 2011, SIAM J. Numer. Anal..

[30]  Weizhang Huang,et al.  Discrete Maximum Principle for the Weak Galerkin Method for Anisotropic Diffusion Problems , 2014, 1401.6232.

[31]  Thomas C. Myers,et al.  Potential Contaminant Pathways from Hydraulically Fractured Shale to Aquifers , 2012, Ground water.

[32]  Kazuo Ishihara,et al.  Strong and weak discrete maximum principles for matrices associated with elliptic problems , 1987 .

[33]  Andreas Englert,et al.  Mixing, spreading and reaction in heterogeneous media: a brief review. , 2011, Journal of contaminant hydrology.

[34]  Gianmarco Manzini,et al.  Analysis of the monotonicity conditions in the mimetic finite difference method for elliptic problems , 2011, J. Comput. Phys..

[35]  A. Huerta,et al.  Finite Element Methods for Flow Problems , 2003 .

[36]  Waldemar Rachowicz,et al.  An anisotropic h-type mesh-refinement strategy , 1993 .

[37]  Harsha Nagarajan,et al.  A numerical methodology for enforcing maximum principles and the non-negative constraint for transient diffusion equations , 2012, ArXiv.

[38]  Andrés Sahuquillo,et al.  Influence of Hydraulic Conductivity and Wellbore Design in the Fate and Transport of Nitrate in Multi-aquifer Systems , 2012, Mathematical Geosciences.

[39]  Perry L. McCarty,et al.  Chemical and Biological Processes: The Need for Mixing , 2012 .

[40]  Cem B. Avci,et al.  EVALUATION OF FLOW LEAKAGE THROUGH ABANDONED WELLS AND BOREHOLES , 1994 .

[41]  Mariette Yvinec,et al.  Locally uniform anisotropic meshing , 2008, SCG '08.

[42]  D. Birchall,et al.  Computational Fluid Dynamics , 2020, Radial Flow Turbocompressors.

[43]  Leonard F. Konikow,et al.  Effects of intraborehole flow on groundwater age distribution , 2007 .

[44]  R. Varga,et al.  Discrete variational Green's function , 1970 .

[45]  Changhua Yu,et al.  Finite volume element methods for nonequilibrium radiation diffusion equations , 2013 .

[46]  Weizhang Huang,et al.  Anisotropic mesh adaptation for 3D anisotropic diffusion problems with application to fractured reservoir simulation , 2015 .

[47]  Ralf Kornhuber,et al.  On adaptive grid refinement in the presence of internal or boundary layers , 1990, IMPACT Comput. Sci. Eng..

[48]  J. Z. Zhu,et al.  The finite element method , 1977 .

[49]  Steven J. Owen,et al.  A Survey of Unstructured Mesh Generation Technology , 1998, IMR.

[50]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[51]  Weizhang Huang,et al.  An anisotropic mesh adaptation method for the finite element solution of heterogeneous anisotropic diffusion problems , 2010, J. Comput. Phys..

[52]  Alper Üngör,et al.  Computing Triangulations without Small and Large Angles , 2009, 2009 Sixth International Symposium on Voronoi Diagrams.

[53]  Thomas J. R. Hughes,et al.  The Continuous Galerkin Method Is Locally Conservative , 2000 .

[54]  Pierre Alliez,et al.  CGAL - The Computational Geometry Algorithms Library , 2011 .

[55]  Ivar Aavatsmark,et al.  Monotonicity of control volume methods , 2007, Numerische Mathematik.

[56]  Jerome Droniou,et al.  FINITE VOLUME SCHEMES FOR DIFFUSION EQUATIONS: INTRODUCTION TO AND REVIEW OF MODERN METHODS , 2014, 1407.1567.

[57]  Sergey Korotov,et al.  The discrete maximum principle for linear simplicial finite element approximations of a reaction-diffusion problem , 2008 .

[58]  Leonid P. Lebedev,et al.  Inequalities: With Applications to Engineering , 1998 .

[59]  Jianxian Qiu,et al.  Maximum principle in linear finite element approximations of anisotropic diffusion–convection–reaction problems , 2012, Numerische Mathematik.

[60]  Chia-Ven Pao,et al.  Nonlinear parabolic and elliptic equations , 1993 .

[61]  M. Filipiak Mesh Generation , 2007 .

[63]  Albert J. Valocchi,et al.  Non-negative mixed finite element formulations for a tensorial diffusion equation , 2008, J. Comput. Phys..

[64]  Philippe G. Ciarlet Discrete variational Green's function. I , 1970 .

[65]  Bharat K. Soni,et al.  Mesh Generation , 2020, Handbook of Computational Geometry.

[66]  Po-Wen Hsieh,et al.  On efficient least-squares finite element methods for convection-dominated problems , 2009 .

[67]  Philippe G. Ciarlet,et al.  Discrete maximum principle for finite-difference operators , 1970 .

[68]  Frédéric Hecht,et al.  New development in freefem++ , 2012, J. Num. Math..

[69]  H. Cohen,et al.  Potential Contaminant Pathways from Hydraulically Fractured Shale to Aquifers , 2013, Ground water.

[70]  Konstantin Lipnikov,et al.  Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes , 2005, SIAM J. Numer. Anal..

[71]  Todd F. Dupont,et al.  Failure of the discrete maximum principle for an elliptic finite element problem , 2004, Math. Comput..

[72]  R. Eymard,et al.  A UNIFIED APPROACH TO MIMETIC FINITE DIFFERENCE, HYBRID FINITE VOLUME AND MIXED FINITE VOLUME METHODS , 2008, 0812.2097.

[73]  Paul Steinmann,et al.  Investigations on the polygonal finite element method: Constrained adaptive Delaunay tessellation and conformal interpolants , 2013 .

[74]  Weizhang Huang,et al.  Sign-preserving of principal eigenfunctions in P1 finite element approximation of eigenvalue problems of second-order elliptic operators , 2013, J. Comput. Phys..

[75]  Maruti Kumar Mudunuru,et al.  A framework for coupled deformation–diffusion analysis with application to degradation/healing , 2011, ArXiv.

[76]  J. N. Reddy,et al.  On the performance of high‐order finite elements with respect to maximum principles and the nonnegative constraint for diffusion‐type equations , 2011, ArXiv.

[77]  Zhiqiang Sheng,et al.  Discrete maximum principle based on repair technique for diamond type scheme of diffusion problems , 2012 .

[78]  A. Berman,et al.  SEMIGROUPS OF NONNEGATIVE MATRICES , 1979 .

[79]  C. Kreuzer A note on why enforcing discrete maximum principles by a simple a posteriori cutoff is a good idea , 2012, 1208.3958.

[80]  Ivan Kapyrin,et al.  Monotonicity recovering and accuracy preserving optimization methods for postprocessing finite element solutions , 2012, J. Comput. Phys..

[81]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[82]  Frédéric Hecht,et al.  Anisotropic unstructured mesh adaption for flow simulations , 1997 .

[83]  Alexandre Ern,et al.  Stabilized Galerkin approximation of convection-diffusion-reaction equations: discrete maximum principle and convergence , 2005, Math. Comput..

[84]  T. J. Chung,et al.  Computational Fluid Dynamics: Contents , 2010 .

[85]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[86]  Mikhail Shashkov,et al.  The repair paradigm and application to conservation laws , 2004 .

[87]  Paul S. Heckbert,et al.  A Pliant Method for Anisotropic Mesh Generation , 1996 .

[88]  René Schneider A Review of Anisotropic Refinement Methods for Triangular Meshes in FEM , 2013 .

[89]  Leonard F Konikow,et al.  Modeling effects of multinode wells on solute transport. , 2006, Ground water.

[90]  A. Huerta,et al.  Finite Element Methods for Flow Problems , 2003 .

[91]  E. A. Sudicky,et al.  Influence of Leaky Boreholes on Cross‐Formational Groundwater Flow and Contaminant Transport , 1995 .

[92]  Len G. Margolin,et al.  Remapping, recovery and repair on a staggered grid , 2004 .

[93]  Weizhang Huang,et al.  The cutoff method for the numerical computation of nonnegative solutions of parabolic PDEs with application to anisotropic diffusion and Lubrication-type equations , 2012, J. Comput. Phys..

[94]  Damrong Guoy,et al.  Well-Centered Triangulation , 2008, SIAM J. Sci. Comput..

[95]  Lili Ju,et al.  Adaptive Anisotropic Meshing For Steady Convection-Dominated Problems , 2009 .

[96]  A. J. Wathen,et al.  An analysis of some element-by-element techniques , 1989 .

[97]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[98]  Olga Taussky-Todd SOME CONCRETE ASPECTS OF HILBERT'S 17TH PROBLEM , 1996 .

[99]  Alper Üngör,et al.  Quality Triangulations with Locally Optimal Steiner Points , 2009, SIAM J. Sci. Comput..

[100]  Long Chen FINITE ELEMENT METHOD , 2013 .

[101]  M. Shashkov,et al.  An efficient linearity-and-bound-preserving remapping method , 2003 .

[102]  Pascal Frey,et al.  Anisotropic mesh adaptation for CFD computations , 2005 .

[103]  Patrizia Pucci,et al.  The Maximum Principle , 2007 .

[104]  Glaucio H. Paulino,et al.  Polygonal finite elements for finite elasticity , 2015 .

[105]  Gianmarco Manzini,et al.  A unified approach for handling convection terms in finite volumes and mimetic discretization methods for elliptic problems , 2011 .

[106]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[107]  V. Gregory Weirs,et al.  Adaptive Mesh Refinement - Theory and Applications , 2008 .

[108]  John Crank,et al.  The Mathematics Of Diffusion , 1956 .

[109]  P. G. Ciarlet,et al.  Maximum principle and uniform convergence for the finite element method , 1973 .

[110]  J. Szmelter Incompressible flow and the finite element method , 2001 .

[111]  Kenji Shimada,et al.  Anisotropic tetrahedral meshing via bubble packing and advancing front , 2003 .

[112]  Weizhang Huang,et al.  Variational mesh adaptation: isotropy and equidistribution , 2001 .

[113]  Michael T. Heath,et al.  Scientific Computing: An Introductory Survey , 1996 .

[114]  Tomáš Vejchodský,et al.  Angle Conditions for Discrete Maximum Principles in Higher-Order FEM , 2010 .

[115]  Mikhail Shashkov,et al.  An efficient linearity and bound preserving conservative interpolation (remapping) on polyhedral meshes , 2007 .

[116]  M. Gurtin,et al.  An introduction to continuum mechanics , 1981 .

[117]  Masanao Aoki,et al.  Modeling Aggregate Behavior and Fluctuations in Economics: Stochastic Views of Interacting Agents , 2001 .

[118]  Houman Borouchaki,et al.  The BL2D Mesh Generator: Beginner's Guide, User's and Programmer's Manual , 1996 .

[119]  Mariette Yvinec,et al.  Anisotropic Delaunay Mesh Generation , 2015, SIAM J. Comput..

[120]  K. B. Nakshatrala,et al.  A Mixed Formulation for a Modification to Darcy Equation Based on Picard Linearization and Numerical Solutions to Large-Scale Realistic Problems , 2011, ArXiv.

[121]  James E Saiers,et al.  Potential Contaminant Pathways from Hydraulically Fractured Shale Aquifers , 2012, Ground water.

[122]  Weizhang Huang,et al.  An anisotropic mesh adaptation method for the finite element solution of variational problems , 2010 .

[123]  Paul Steinmann,et al.  Finite element formulations for 3D convex polyhedra in nonlinear continuum mechanics , 2017 .

[124]  Rainer Helmig,et al.  CO2 leakage through an abandoned well: problem-oriented benchmarks , 2007 .

[125]  B. Wohlmuth,et al.  MIXED FINITE ELEMENT METHODS: IMPLEMENTATION WITH ONE UNKNOWN PER ELEMENT, LOCAL FLUX EXPRESSIONS, POSITIVITY, POLYGONAL MESHES, AND RELATIONS TO OTHER METHODS , 2013 .

[126]  Alper Üngör,et al.  Computing Acute and Non-obtuse Triangulations , 2007, CCCG.

[127]  Ivo Babuška,et al.  Finite Elements: An Introduction to the Method and Error Estimation , 2010 .

[128]  C. Zheng,et al.  Applied contaminant transport modeling , 2002 .

[129]  Z. Mei Numerical Bifurcation Analysis for Reaction-Diffusion Equations , 2000 .