Systematic selection of solvent mixtures for non-aqueous redox flow batteries – vanadium acetylacetonate as a model system

[1]  T. Nguyen,et al.  Redox Flow Batteries–Reversible Fuel Cells , 2016 .

[2]  Ke Gong,et al.  Nonaqueous redox-flow batteries: organic solvents, supporting electrolytes, and redox pairs , 2015, Energy & Environmental Science.

[3]  T. Zhao,et al.  A vanadium redox flow battery model incorporating the effect of ion concentrations on ion mobility , 2015 .

[4]  L. Thompson,et al.  Evaluation of Tris-Bipyridine Chromium Complexes for Flow Battery Applications: Impact of Bipyridine Ligand Structure on Solubility and Electrochemistry. , 2015, Inorganic chemistry.

[5]  Bin Li,et al.  Radical Compatibility with Nonaqueous Electrolytes and Its Impact on an All-Organic Redox Flow Battery. , 2015, Angewandte Chemie.

[6]  L. Thompson,et al.  Complexes Containing Redox Noninnocent Ligands for Symmetric, Multielectron Transfer Nonaqueous Redox Flow Batteries , 2015 .

[7]  Vincent L. Sprenkle,et al.  Room Temperature, Hybrid Sodium-Based Flow Batteries with Multi-Electron Transfer Redox Reactions , 2015, Scientific Reports.

[8]  Sam F. Y. Li,et al.  Nonaqueous redox-flow batteries: features, challenges, and prospects , 2015 .

[9]  Nicolas E. Holubowitch,et al.  A Highly Soluble Organic Catholyte for Non‐Aqueous Redox Flow Batteries , 2015 .

[10]  Yongdan Li,et al.  A non-aqueous all-cobalt redox flow battery using 1,10-phenanthrolinecobalt(II) hexafluorophosphate as active species , 2015 .

[11]  R. Savinell,et al.  Metal acetylacetonate complexes for high energy density non-aqueous redox flow batteries , 2015 .

[12]  T. Zhao,et al.  Electrochemical characteristics and transport properties of Fe(II)/Fe(III) redox couple in a non-aqueous reline deep eutectic solvent , 2015 .

[13]  P. Fischer,et al.  Increasing the energy density of the non-aqueous vanadium redox flow battery with the acetonitrile-1,3-dioxolane–dimethyl sulfoxide solvent mixture , 2014 .

[14]  Jianguo Liu,et al.  Temperature-related reaction kinetics of the vanadium(IV)/(V) redox couple in acidic solutions , 2014 .

[15]  P. Fischer,et al.  1,3-Dioxolane, tetrahydrofuran, acetylacetone and dimethyl sulfoxide as solvents for non-aqueous vanadium acetylacetonate redox-flow-batteries , 2013 .

[16]  Seung-Hyeon Moon,et al.  A review of current developments in non-aqueous redox flow batteries: characterization of their membranes for design perspective , 2013 .

[17]  Aaron A. Shinkle Non-Aqueous Single-Metal Redox Flow Batteries. , 2013 .

[18]  Qinghua Liu,et al.  Tetrabutylammonium hexafluorophosphate and 1-ethyl-3-methyl imidazolium hexafluorophosphate ionic liquids as supporting electrolytes for non-aqueous vanadium redox flow batteries , 2012 .

[19]  M. Fakhree,et al.  Prediction of viscosity of binary solvent mixtures at various temperatures , 2011 .

[20]  M. H. Chakrabarti,et al.  Ruthenium based redox flow battery for solar energy storage , 2011 .

[21]  Charles W. Monroe,et al.  Non-aqueous manganese acetylacetonate electrolyte for redox flow batteries , 2011 .

[22]  Charles W. Monroe,et al.  Electrode kinetics in non-aqueous vanadium acetylacetonate redox flow batteries , 2011 .

[23]  T. Welton,et al.  Empirical Parameters of Solvent Polarity , 2010 .

[24]  David Linden,et al.  Linden's Handbook of Batteries , 2010 .

[25]  D. Joseph Fluid Dynamics of Mixtures of Incompressible Miscible Liquids , 2010 .

[26]  Charles W. Monroe,et al.  Non-aqueous chromium acetylacetonate electrolyte for redox flow batteries , 2009 .

[27]  Meijing Zhang,et al.  Solubility of Deflazacort in Binary Solvent Mixtures , 2009 .

[28]  Organic Electrolytes for Redox Flow Batteries , 2007 .

[29]  A. Nain Densities and volumetric properties of (acetonitrile + an amide) binary mixtures at temperatures between 293.15 K and 318.15 K , 2006 .

[30]  M. Roy,et al.  Studies on Thermodynamic and Transport Properties of Binary Mixtures of Acetonitrile with Some Cyclic Ethers at Different Temperatures by Volumetric, Viscometric, and Interferometric Techniques , 2006 .

[31]  K. Izutsu Electrochemistry in Nonaqueous Solutions , 2002 .

[32]  Daniel Lemordant,et al.  Electrolytic characteristics of ethylene carbonate–diglyme-based electrolytes for lithium batteries , 2000 .

[33]  C. Adam,et al.  Characterization of solvent mixtures. Part 8 — preferential solvation of chemical probes in binary solvent systems of a polar aprotic hydrogen-bond acceptor solvent with acetonitrile or nitromethane. Solvent effects on aromatic nucleophilic substitution reactions , 1999 .

[34]  M. Bakshi,et al.  Thermodynamic Behavior of Mixtures. 3. Mixtures of Acetonitrile with Dimethylacetamide, Dimethyl Sulfoxide, Nitrobenzene, and Methanol at 25 °C , 1996 .

[35]  J. Ortega,et al.  Solute–solvent and solvent–solvent interactions in binary solvent mixtures. Part 1. A comparison of several preferential solvation models for describing ET(30) polarity of bipolar hydrogen bond acceptor-cosolvent mixtures , 1995 .

[36]  E. Bosch,et al.  Relationship between ET polarity and composition in binary solvent mixtures , 1992 .

[37]  D. Panopoulos,et al.  Excess properties of the binary liquid system propylene carbonate + acetonitrile , 1991 .

[38]  M. Morita,et al.  A rechargeable redox battery utilizing ruthenium complexes with non-aqueous organic electrolyte , 1988 .

[39]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[40]  A. D'aprano Influence of solvent structure on ion pair association: The conductance of potassium perchlorate in ethylene carbonate-acetonitrile mixtures at 25°C , 1974 .