X-Ray fluorescence spectrometry

The article contains sections titled: 1. Introduction 2. Properties of X Rays 3. Interaction of X Rays with Matter 3.1. Photoelectric Effect 3.2. Scattered Radiation 4. Attenuation of X Rays in Matter 5. Penetration of X Rays 6. Instrumentation 6.1. X-Ray Sources 6.2. X-Ray Detectors 6.3. Geometrical Considerations 6.4. X-Ray Optics 6.5. Single- and Multichannel Analyzers 7. Samples for EDXRF Analysis 7.1. Count–Concentration Relationship for X Rays of a Given Element 7.2. Thin Samples 7.3. Thick Samples 8. X-Ray Fluorescence Spectrometers 9. Optimization of an EDXRF Spectrometer 10. X-Ray Spectrum 11. Quantification of XRF Analysis 12. Radiation Doses in EDXRF Analysis 12.1. In vitro XRF Analysis 12.2. In vivo XRF analysis 13. Wavelength-Dispersive X-Ray Systems 14. Applications of EDXRF Analysis 14.1. Environmental Samples 14.2. Metals and Industrial Alloys 14.3. Works of Art 14.4. Medical Sciences 14.5. Forensic Applications 15. Micro X-Ray Fluorescence 16. Grazing-Incidence X-Ray Spectrometry and Total Reflection XRF

[1]  D. Bradley,et al.  Measurement of K, Fe, Cu and Zn levels in secondary colorectal liver cancer and surrounding normal liver tissue, and their potential as a tissue classifier , 2009 .

[2]  R. Cesareo,et al.  The analysis of bronze alloys from the equestrian statue of Marco Aurelio by means of a thin sample XRF technique , 1989 .

[3]  M. Carvalho,et al.  Arsenic detection in nineteenth century Portuguese King post mortem tissues by energy-dispersive x-ray fluorescence spectrometry , 2002 .

[4]  M Alpsten,et al.  In vivo XRF analysis of mercury: the relation between concentrations in the kidney and the urine. , 1995, Physics in medicine and biology.

[5]  Stanislaw Piorek,et al.  Chapter 6:Alloy Identification and Analysis with a Field-Portable XRF Analyser , 2008 .

[6]  F. McNeill,et al.  In vivo X-ray fluorescence (XRF) measurement of uranium in bone. , 1998, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[7]  R. Cesareo,et al.  A portable instrument for energy-dispersive X-ray fluorescence analysis of sulfur , 1997 .

[8]  V. Valković,et al.  Concentration of some elements in the Adriatic coastal sea sediments. Case study: the Kvarner Bay , 2007 .

[9]  J. H. Hubbell,et al.  Atomic form factors, incoherent scattering functions, and photon scattering cross sections , 1975 .

[10]  A. Ribeiro-Silva,et al.  Determination of Ca, Fe, Cu and Zn and their correlations in breast cancer and normal adjacent tissues , 2009 .

[11]  J. Kawai,et al.  Portable total reflection X-ray fluorescence spectrometer for nanogram Cr detection limit. , 2007, Analytical chemistry.

[12]  M. Drakopoulos,et al.  Strontium incorporates at sites critical for bone mineralization in rats with renal failure , 2007 .

[13]  A C Todd,et al.  In vivo X-ray fluorescence of lead in bone: review and current issues. , 1994, Environmental health perspectives.

[14]  R. Cesareo Non-destructive EDXRF-analysis of the golden haloes of Giotto's frescos in the chapel of the Scrovegni in Padua , 2003 .

[15]  A. Todd,et al.  Measurements of lead in human tibiae. A comparison between K-shell x-ray fluorescence and electrothermal atomic absorption spectrometry. , 2002, Physics in medicine and biology.

[16]  H. Roels,et al.  Development of a K-shell x-ray fluorescence measurement of cadmium in bone , 2005 .

[17]  V. Oreščanin,et al.  Applicability of MiniPal 4 compact EDXRF spectrometer for soil and sediment analysis , 2008 .

[18]  Feasibility of a Fluorescent X‐ray Source for in Vivo X‐ray Fluorescence Measurements of Kidney and Liver Cadmium , 2000, Annals of the New York Academy of Sciences.

[19]  V. N. Filho,et al.  Atmospheric particulate analysis by synchrotron radiation total reflection (SR-TXRF) , 2002 .

[20]  M. Óvári,et al.  The use of a portable total reflection X-ray fluorescence spectrometer for field investigation , 2003 .

[21]  J. Watson,et al.  Trace Element Analysis of Geochemical Reference Samples by Energy Dispersive X‐ray Fluorescence Spectrometry , 1990 .

[22]  Philip J. Potts,et al.  Portable x-ray fluorescence spectrometry : capabilities for in situ analysis , 2008 .

[23]  S. Ridolfi,et al.  Pigment layers and precious metal sheets by energy-dispersive x-ray fluorescence analysis , 2008 .

[24]  Yuri Kitamura,et al.  Quantitative analysis of zinc in prostate cancer tissues using synchrotron radiation microbeams , 2002 .

[25]  Theodore L Hopman,et al.  Simulations of Si(Li) x-ray detector response , 2001 .

[26]  P. Wobrauschek,et al.  Total-reflection x-ray fluorescence spectrometric determination of elements in nanogram amounts , 1975 .

[27]  F. V. Frazzoli,et al.  NON‐DESTRUCTIVE ANALYSIS OF CHEMICAL ELEMENTS IN PAINTINGS AND ENAMELS , 1972 .

[28]  David R. Chettle,et al.  Detection of mercury in the kidney via source-excited x-ray fluorescence , 2007 .

[29]  S. Skerfving,et al.  Lead in fingerbone: a tool for retrospective exposure assessment. , 1997, Archives of Environmental Health An International Journal.

[30]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[31]  Roberto Cesareo,et al.  A portable apparatus for energy-dispersive X-ray fluorescence analysis of sulfur and chlorine in frescoes and stone monuments , 1999 .

[32]  Z. Brożek-Mucha X-ray microanalysis of glass for forensic purposes—research on the persistence of glass fragments on clothing , 2009 .

[33]  P. Espen,et al.  Implementation of a spectrum fitting procedure using a robust peak model , 2003 .

[34]  B. Kanngießer,et al.  Handbook of practical X-ray fluorescence analysis , 2006 .

[35]  Yasuko Terada,et al.  Nondestructive discrimination of small glass fragments for forensic examination using high energy synchrotron radiation x‐ray fluorescence spectrometry , 2006 .

[36]  P. Potts,et al.  Evaluation of portable X-ray fluorescence instrumentation for in situ measurements of lead on contaminated land , 1997 .

[37]  L J Somervaille,et al.  In vivo measurement of lead in bone using x-ray fluorescence. , 1985, Physics in medicine and biology.

[38]  P. Pella,et al.  Uncertainties in mass absorption coefficients in fundamental parameter X‐ray fluorescence analysis , 1988 .

[39]  D. Bradley,et al.  XRF and the in vivo evaluation of toxicological metals , 1999 .

[40]  K. Nakano,et al.  Development of confocal 3D micro-XRF spectrometer with dual CrMo excitation† , 2007 .

[41]  S. Lillicrap,et al.  Technical note: an X-ray fluorescence system for the determination of gold in vivo following chrysotherapy. , 1993, The British journal of radiology.

[42]  J. R. Patel,et al.  X-Ray Evanescent-Wave Absorption and Emission , 1983 .

[43]  E. Marguí,et al.  Improvement approaches for the determination of Cr(VI), Cd(II), Pd(II) and Pt(IV) contained in aqueous samples by conventional XRF instrumentation , 2009 .

[44]  D C Price,et al.  An automated fluorescent excitation analysis system for medical applications. , 1976, Investigative radiology.

[45]  Andrzej A. Markowicz,et al.  Chapter 2:Quantification and Correction Procedures , 2008 .

[46]  M. Donativi,et al.  Portable EDXRF surface mapping of sulfate concentration on Michelangelo's David , 2006 .

[47]  E. S. Lindgren,et al.  Elemental characterization of airborne particles in Khartoum, Sudan , 2005 .

[48]  V. Zaichick,et al.  In vivo X-ray fluorescence for estimation of essential and toxic trace elements in teeth. , 1998, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[49]  A. Bagshaw,et al.  The use of skin Fe levels as a surrogate marker for organ Fe levels, to monitor treatment in cases of iron overload. , 2000, Physics in medicine and biology.

[50]  S. Ridolfi,et al.  From Giotto to De Chirico to Verrocchio: analyses of paintings and historical bronze alloys availing of portable EDXRF equipment , 2006 .

[51]  C. Can,et al.  An investigation of x‐ray escape for an HPGe detector , 2003 .

[52]  D. E. Fleming,et al.  Fundamental parameter approach to XRF spectroscopy measurements of arsenic in polyester resin skin phantoms , 2008 .

[53]  P. Potts,et al.  Spatial contaminant heterogeneity: quantification with scale of measurement at contrasting sites. , 2005, Journal of environmental monitoring : JEM.

[54]  M. Radtke,et al.  Analysis of Ni on Si-wafer surfaces using synchrotron radiation excited total reflection X-ray fluorescence analysis , 1997 .

[55]  J. Kawai,et al.  Trace elemental analysis of commercial bottled drinking water by a portable total reflection X-ray fluorescence spectrometer. , 2007, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[56]  T. Horiuchi,et al.  Optical flats for use in x-ray spectrochemical microanalysis. , 1971, The Review of scientific instruments.