Probabilistic Asynchronous -calculus ?

In this dissertation, we consider a distributed implementation of the π-calculus, more precisely, the version of the π-calculus with mixed choice. To this end, we present the probabilistic asynchronous π-calculus, which is an extension of the asynchronous πcalculus enhanced with a notion of random choice. We define an operational semantics which distinguishes between probabilistic choice, made internally by the process, and nondeterministic choice, made externally by an adversary scheduler. This distinction will allow us to reason about the probabilistic correctness of algorithms under certain schedulers. We show that in this language we can solve the electoral problem, which was proved not possible in the asynchronous π-calculus. We propose a randomized distributed encoding of the π-calculus, using the probabilistic asynchronous π-calculus, and we show that our solution is correct with probability 1 under any proper adversary with respect to a notion of testing semantics. Finally, in order to prove that the probabilistic asynchronous π-calculus is a sensible paradigm for the specification of distributed algorithms, we define a distributed implementation of the synchronization-closed probabilistic asynchronous π-calculus in the Java language.

[1]  James L. Peterson,et al.  Petri Nets , 1977, CSUR.

[2]  C. A. R. Hoare,et al.  Communicating sequential processes , 1978, CACM.

[3]  Robin Milner,et al.  A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.

[4]  Michael Rodeh,et al.  A distributed abstract data type implemented by a probabilistic communication scheme , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[5]  Daniel Lehmann,et al.  On the advantages of free choice: a symmetric and fully distributed solution to the dining philosophers problem , 1981, POPL '81.

[6]  Rocco De Nicola,et al.  Testing Equivalences for Processes , 1984, Theor. Comput. Sci..

[7]  Paul G. Spirakis,et al.  Real-Time Synchronization of Interprocess Communications , 1984, TOPL.

[8]  Jan A. Bergstra,et al.  Algebra of Communicating Processes with Abstraction , 1985, Theor. Comput. Sci..

[9]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[10]  Jifeng He,et al.  A Theory of Synchrony and Asynchrony , 1990, Programming Concepts and Methods.

[11]  Mario Tokoro,et al.  An Object Calculus for Asynchronous Communication , 1991, ECOOP.

[12]  G. Erard Boudol Asynchrony and the -calculus (note) , 1992 .

[13]  Peter Sjödin,et al.  Multiway Synchronization Verified with Coupled Simulation , 1992, CONCUR.

[14]  Frederick Knabe,et al.  A Distributed Protocol for Channel-Based Communication with Choice , 1992, PARLE.

[15]  Wang Yi,et al.  Testing Probabilistic and Nondeterministic Processes , 1992, PSTV.

[16]  Robin Milner,et al.  Modal Logics for Mobile Processes , 1991, Theor. Comput. Sci..

[17]  Nancy A. Lynch,et al.  Proving time bounds for randomized distributed algorithms , 1994, PODC '94.

[18]  Yih-Kuen Tsay,et al.  Fault-Tolerant Algorithms for Fair Interprocess Synchronization , 1994, IEEE Trans. Parallel Distributed Syst..

[19]  Nancy A. Lynch,et al.  Probabilistic Simulations for Probabilistic Processes , 1994, Nord. J. Comput..

[20]  Bernhard Steffen,et al.  Reactive, Generative and Stratified Models of Probabilistic Processes , 1995, Inf. Comput..

[21]  D. Sangiorgi - calculus , internal mobility , and agent-passing calculi , 1995 .

[22]  Wang Yi,et al.  Compositional testing preorders for probabilistic processes , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[23]  Roberto Segala,et al.  Modeling and verification of randomized distributed real-time systems , 1996 .

[24]  Rocco De Nicola,et al.  Testing Equivalence for Mobile Processes , 1995, Inf. Comput..

[25]  Benjamin C. Pierce,et al.  Decoding Choice Encodings , 1996, CONCUR.

[26]  Roberto Segala,et al.  Testing Probabilistic Automata , 1996, CONCUR.

[27]  Yuh-Jzer Joung,et al.  Strong interaction fairness via randomization , 1996, Proceedings of 16th International Conference on Distributed Computing Systems.

[28]  Catuscia Palamidessi,et al.  Comparing the expressive power of the synchronous and the asynchronous π-calculus , 1998, POPL '97.

[29]  Davide Sangiorgi,et al.  Some Congruence Properties for Pi-Calculus Bisimilarities , 1998, Theor. Comput. Sci..

[30]  Uwe Nestmann On the Expressive Power of Joint Input , 1998, EXPRESS.

[31]  Luís Lopes,et al.  On the design and implementation of a virtual machine for process calculi , 1999 .

[32]  Robert J. Townsley,et al.  What is a Good? , 1999 .

[33]  Paweł T. Wojciechowski,et al.  Nomadic pict: language and infrastructure design for mobile computation , 2000 .

[34]  Uwe Nestmann What is a "Good" Encoding of Guarded Choice? , 2000, Inf. Comput..

[35]  Benjamin C. Pierce,et al.  Pict: a programming language based on the Pi-Calculus , 2000, Proof, Language, and Interaction.

[36]  Oltea Mihaela Herescu Probabilistic asynchronous π-calculus ∗ , 2000 .

[37]  Yuh-Jzer Joung,et al.  Two decentralized algorithms for strong interaction fairness for systems with unbounded speed variability , 2000, Theor. Comput. Sci..

[38]  Davide Sangiorgi,et al.  Communicating and Mobile Systems: the π-calculus, , 2000 .

[39]  Peter Sewell,et al.  Nomadic pict: correct communication infrastructure for mobile computation , 2001, POPL '01.

[40]  Wang Yi,et al.  Probabilistic Extensions of Process Algebras , 2001, Handbook of Process Algebra.

[41]  Catuscia Palamidessi,et al.  On the generalized dining philosophers problem , 2001, PODC '01.

[42]  Laurent Fribourg,et al.  Randomized Finite-State Distributed Algorithms as Markov Chains , 2001, DISC.

[43]  Catuscia Palamidessi,et al.  A Randomized Distributed Encoding of the Pi-Calculus with Mixed Choice , 2002, IFIP TCS.