A Multiscale Sub-linear Time Fourier Algorithm for Noisy Data

We extend the recent sparse Fourier transform algorithm of (Lawlor, Christlieb, and Wang, 2013) to the noisy setting, in which a signal of bandwidth N is given as a superposition of k << N frequencies and additive noise. We present two such extensions, the second of which exhibits a novel form of error-correction in its frequency estimation not unlike that of the beta-encoders in analog-to-digital conversion (Daubechies et al, 2006). The algorithm runs in time O(k log(k) log(N/k)) on average, provided the noise is not overwhelming. The error-correction property allows the algorithm to outperform FFTW, a highly optimized software package for computing the full discrete Fourier transform, over a wide range of sparsity and noise values, and is to the best of our knowledge novel in the sparse Fourier transform context.

[1]  Yang Wang,et al.  Adaptive sub-linear Fourier algorithms , 2012, ArXiv.

[2]  Adi Akavia,et al.  Deterministic Sparse Fourier Approximation Via Approximating Arithmetic Progressions , 2014, IEEE Transactions on Information Theory.

[3]  Anna C. Gilbert,et al.  Improved time bounds for near-optimal sparse Fourier representations , 2005, SPIE Optics + Photonics.

[4]  Piotr Indyk,et al.  Nearly optimal sparse fourier transform , 2012, STOC '12.

[5]  Yishay Mansour,et al.  Randomized Interpolation and Approximation of Sparse Polynomials , 1992, SIAM J. Comput..

[6]  Leonidas J. Guibas,et al.  The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.

[7]  Ronald A. DeVore,et al.  A/D conversion with imperfect quantizers , 2006, IEEE Transactions on Information Theory.

[8]  Piotr Indyk,et al.  Simple and practical algorithm for sparse Fourier transform , 2012, SODA.

[9]  A. Prasad Vinod,et al.  A New Flexible Filter Bank for Low Complexity Spectrum Sensing in Cognitive Radios , 2011, J. Signal Process. Syst..

[10]  Shafi Goldwasser,et al.  Proving hard-core predicates using list decoding , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[11]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[12]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[13]  Yang Wang,et al.  Adaptive Sub-Linear Time Fourier Algorithms , 2013, Adv. Data Sci. Adapt. Anal..

[14]  Eyal Kushilevitz,et al.  Learning Decision Trees Using the Fourier Spectrum , 1993, SIAM J. Comput..

[15]  Guangming Shi,et al.  UWB Echo Signal Detection With Ultra-Low Rate Sampling Based on Compressed Sensing , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[16]  Piotr Indyk,et al.  Faster GPS via the sparse fourier transform , 2012, Mobicom '12.

[17]  Mark A. Iwen,et al.  Combinatorial Sublinear-Time Fourier Algorithms , 2010, Found. Comput. Math..

[18]  Leonid A. Levin,et al.  A hard-core predicate for all one-way functions , 1989, STOC '89.

[19]  Adi Akavia,et al.  Solving Hidden Number Problem with One Bit Oracle and Advice , 2009, CRYPTO.

[20]  Sudipto Guha,et al.  Near-optimal sparse fourier representations via sampling , 2002, STOC '02.

[21]  Chris Anderson,et al.  Rapid Computation of the Discrete Fourier Transform , 1996, SIAM J. Sci. Comput..

[22]  Volkan Cevher,et al.  What's the Frequency, Kenneth?: Sublinear Fourier Sampling Off the Grid , 2012, APPROX-RANDOM.

[23]  Parikshit Shah,et al.  Compressive sensing off the grid , 2012, 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[24]  Mark A. Iwen,et al.  Empirical evaluation of a sub-linear time sparse DFT algorithm , 2007 .