Image segmentation and analysis via multiscale gradient watershed hierarchies

Multiscale image analysis has been used successfully in a number of applications to classify image features according to their relative scales. As a consequence, much has been learned about the scale-space behavior of intensity extrema, edges, intensity ridges, and grey-level blobs. We investigate the multiscale behavior of gradient watershed regions. These regions are defined in terms of the gradient properties of the gradient magnitude of the original image. Boundaries of gradient watershed regions correspond to the edges of objects in an image. Multiscale analysis of intensity minima in the gradient magnitude image provides a mechanism for imposing a scale-based hierarchy on the watersheds associated with these minima. This hierarchy can be used to label watershed boundaries according to their scale. This provides valuable insight into the multiscale properties of edges in an image without following these curves through scale-space. In addition, the gradient watershed region hierarchy can be used for automatic or interactive image segmentation. By selecting subtrees of the region hierarchy, visually sensible objects in an image can be easily constructed.

[1]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  James J. Clark Singularity Theory and Phantom Edges in Scale Space , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[4]  Paul Jackway Morphological scale-space , 1992 .

[5]  William E. Higgins,et al.  Watershed-driven relaxation labeling for image segmentation , 1994, Proceedings of 1st International Conference on Image Processing.

[6]  M.-H. Chen,et al.  A Multiscanning Approach Based on Morphological Filtering , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Paul T. Jackway,et al.  Gradient watersheds in morphological scale-space , 1996, IEEE Trans. Image Process..

[8]  Alan L. Yuille,et al.  Scaling Theorems for Zero Crossings , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  John M. Gauch,et al.  Multiresolution Analysis of Ridges and Valleys in Grey-Scale Images , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  A. Rosenfeld,et al.  Edge and Curve Detection for Visual Scene Analysis , 1971, IEEE Transactions on Computers.

[11]  Luc Vincent,et al.  Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Glynn P. Robinson,et al.  Scale and segmentation of grey-level images using maximum gradient paths , 1991, Image and Vision Computing.

[13]  J. Dozier,et al.  Automated basin delineation from digital elevation data , 1984 .

[14]  Xinhua Zhuang,et al.  Image Analysis Using Mathematical Morphology , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Moncef Gabbouj,et al.  Fast watershed algorithms: analysis and extensions , 1994, Electronic Imaging.

[16]  Stanley H. Collins,et al.  TERRAIN PARAMETERS DIRECTLY FROM A DIGITAL TERRAIN MODEL , 1973 .

[17]  Robert M. Haralick,et al.  Zero Crossing Of Second Directional Derivative Edge Operator , 1982, Other Conferences.

[18]  Paul Jackway Morphological Multiscale Gradient Watershed Image Analysis 1..1 Morphological Scale-space , 1995 .

[19]  Torsten Greiner,et al.  Watershed transformation of time series of medical thermal images , 1995, Other Conferences.

[20]  Robert M. Haralick,et al.  Digital Step Edges from Zero Crossing of Second Directional Derivatives , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  John M. Gauch,et al.  Image Description Via The Multiresolution Intensity Axis Of Symmetry , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[22]  Isabelle Bloch,et al.  Segmenting internal structures in 3D MR images of the brain by Markovian relaxation on a watershed based adjacency graph , 1995, Proceedings., International Conference on Image Processing.

[23]  Jacques A. de Guise,et al.  A new set of fast algorithms for mathematical morphology : II. Identification of topographic features on grayscale images , 1992, CVGIP Image Underst..

[24]  Andrew P. Witkin,et al.  Uniqueness of the Gaussian Kernel for Scale-Space Filtering , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Fernand Meyer,et al.  Topographic distance and watershed lines , 1994, Signal Process..

[26]  Robert Hummel,et al.  Reconstructions from zero crossings in scale space , 1989, IEEE Trans. Acoust. Speech Signal Process..

[27]  Achim Hummel,et al.  Representations Based on Zero-Crossing in Scale-Space-M , 2018, CVPR 1986.

[28]  Philippe Salembier,et al.  Morphological multiscale image segmentation , 1992, Other Conferences.

[29]  S. Beucher,et al.  Watersheds of functions and picture segmentation , 1982, ICASSP.

[30]  Ross T. Whitaker,et al.  A multi-scale approach to nonuniform diffusion , 1993 .

[31]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[32]  J. Galayda Edge Focusing , 1981, IEEE Transactions on Nuclear Science.

[33]  Andrew P. Witkin,et al.  Scale-space filtering: A new approach to multi-scale description , 1984, ICASSP.

[34]  David H. Douglas,et al.  Detection of Surface-Specific Points by Local Parallel Processing of Discrete Terrain Elevation Data , 1975 .

[35]  Kari Saarinen Color image segmentation by a watershed algorithm and region adjacency graph processing , 1994, Proceedings of 1st International Conference on Image Processing.

[36]  Tony Lindeberg,et al.  Discrete Scale-Space Theory and the Scale-Space Primal Sketch , 1991 .

[37]  Azriel Rosenfeld,et al.  Segmentation and Estimation of Image Region Properties through Cooperative Hierarchial Computation , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[38]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[39]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  Kidiyo Kpalma,et al.  Cooperation of mathematical morphology and region growing for remote sensing image segmentation , 1995, Remote Sensing.