DUPCAR: Reconstructing Contiguous Ancestral Regions with Duplications

Accurately reconstructing the large-scale gene order in an ancestral genome is a critical step to better understand genome evolution. In this paper, we propose a heuristic algorithm, called DUPCAR, for reconstructing ancestral genomic orders with duplications. The method starts from the order of genes in modern genomes and predicts predecessor and successor relationships in the ancestor. Then a greedy algorithm is used to reconstruct the ancestral orders by connecting genes into contiguous regions based on predicted adjacencies. Computer simulation was used to validate the algorithm. We also applied the method to reconstruct the ancestral chromosome X of placental mammals and the ancestral genomes of the ciliate Paramecium tetraurelia.

[1]  David Sankoff,et al.  Genome Halving with an Outgroup , 2006 .

[2]  D. Sankoff,et al.  Duplication, Rearrangement, and Reconciliation , 2000 .

[3]  David A. Bader,et al.  A detailed study of breakpoint analysis , 2001 .

[4]  K. H. Wolfe,et al.  Extent of genomic rearrangement after genome duplication in yeast. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[5]  D. Sankoff,et al.  Comparative Genomics: "Empirical And Analytical Approaches To Gene Order Dynamics, Map Alignment And The Evolution Of Gene Families" , 2000 .

[6]  James F. Gimpel,et al.  Covering Points of a Digraph with Point-Disjoint Paths and Its Application to Code Optimization , 1977, JACM.

[7]  P. Pevzner,et al.  Genome rearrangements in mammalian evolution: lessons from human and mouse genomes. , 2003, Genome research.

[8]  Cédric Chauve,et al.  Yeast Ancestral Genome Reconstructions: The Possibilities of Computational Methods II , 2010, J. Comput. Biol..

[9]  Pavel A. Pevzner,et al.  Whole Genome Duplications and Contracted Breakpoint Graphs , 2007, SIAM J. Comput..

[10]  Temple F. Smith,et al.  Reconstruction of ancient molecular phylogeny. , 1996, Molecular phylogenetics and evolution.

[11]  Nadia El-Mabrouk,et al.  Reconstructing an ancestral genome using minimum segments duplications and reversals , 2002, J. Comput. Syst. Sci..

[12]  J. G. Burleigh,et al.  Heuristics for the Gene-duplication Problem : A Θ ( n ) Speed-up for the Local Search , 2007 .

[13]  W. Fitch Homology a personal view on some of the problems. , 2000, Trends in genetics : TIG.

[14]  Bin Ma,et al.  From Gene Trees to Species Trees , 2000, SIAM J. Comput..

[15]  P. Pevzner,et al.  The convergence of cytogenetics and rearrangement-based models for ancestral genome reconstruction. , 2006, Genome research.

[16]  Oliver Eulenstein,et al.  Heuristics for the Gene-Duplication Problem: A Theta ( n ) Speed-Up for the Local Search , 2007, RECOMB.

[17]  Ron Shamir,et al.  The median problems for breakpoints are NP-complete , 1998, Electron. Colloquium Comput. Complex..

[18]  P. Pevzner,et al.  Genome-scale evolution: reconstructing gene orders in the ancestral species. , 2002, Genome research.

[19]  J. Nadeau,et al.  Lengths of chromosomal segments conserved since divergence of man and mouse. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[20]  B. Boussau,et al.  Genomes as documents of evolutionary history. , 2010, Trends in ecology & evolution.

[21]  W. Fitch Toward Defining the Course of Evolution: Minimum Change for a Specific Tree Topology , 1971 .

[22]  David Sankoff,et al.  Multiple Genome Rearrangement and Breakpoint Phylogeny , 1998, J. Comput. Biol..

[23]  E. Eichler,et al.  Structural Dynamics of Eukaryotic Chromosome Evolution , 2003, Science.

[24]  Krister M. Swenson,et al.  Genomic Distances under Deletions and Insertions , 2004, Theor. Comput. Sci..

[25]  Yu Zhang,et al.  Reconstructing the Evolutionary History of Complex Human Gene Clusters , 2008, RECOMB.

[26]  Fengtang Yang,et al.  Are molecular cytogenetics and bioinformatics suggesting diverging models of ancestral mammalian genomes? , 2006, Genome research.

[27]  Dannie Durand,et al.  NOTUNG: A Program for Dating Gene Duplications and Optimizing Gene Family Trees , 2000, J. Comput. Biol..

[28]  P. Pevzner,et al.  Dynamics of Mammalian Chromosome Evolution Inferred from Multispecies Comparative Maps , 2005, Science.

[29]  Matthew D. Rasmussen,et al.  Accurate gene-tree reconstruction by learning gene- and species-specific substitution rates across multiple complete genomes. , 2007, Genome research.

[30]  Nicoletta Archidiacono,et al.  Ancestral genomes reconstruction: an integrated, multi-disciplinary approach is needed. , 2006, Genome research.

[31]  Alberto Caprara,et al.  Formulations and hardness of multiple sorting by reversals , 1999, RECOMB.

[32]  G. Moore,et al.  Fitting the gene lineage into its species lineage , 1979 .

[33]  Ilan Newman,et al.  Approximation algorithms for covering a graph by vertex-disjoint paths of maximum total weight , 1990, Networks.

[34]  David Sankoff,et al.  Genome rearrangement with gene families , 1999, Bioinform..

[35]  D. Haussler,et al.  Human-mouse alignments with BLASTZ. , 2003, Genome research.

[36]  R. Guigó,et al.  Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia , 2006, Nature.

[37]  David Sankoff,et al.  The Reconstruction of Doubled Genomes , 2003, SIAM J. Comput..

[38]  Bernard B. Suh,et al.  Reconstructing contiguous regions of an ancestral genome. , 2006, Genome research.