Evidence of flat bands and correlated states in buckled graphene superlattices

[1]  L. Covaci,et al.  Periodically strained graphene lattice: flat bands , 2019, 1910.11752.

[2]  T. Taniguchi,et al.  Maximized electron interactions at the magic angle in twisted bilayer graphene , 2018, Nature.

[3]  Kenji Watanabe,et al.  Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene , 2019, Nature.

[4]  Kenji Watanabe,et al.  Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene , 2019, Nature.

[5]  Takashi Taniguchi,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[6]  E. Kaxiras,et al.  Correlated insulator behaviour at half-filling in magic-angle graphene superlattices , 2018, Nature.

[7]  L. Covaci,et al.  DC conductivity of twisted bilayer graphene: Angle-dependent transport properties and effects of disorder , 2017, 1705.05731.

[8]  Kenji Watanabe,et al.  Visualizing Strain-Induced Pseudomagnetic Fields in Graphene through an hBN Magnifying Glass. , 2017, Nano letters.

[9]  K. Novoselov,et al.  Tuning the Pseudospin Polarization of Graphene by a Pseudomagnetic Field. , 2016, Nano letters.

[10]  Carmen Palacios-Berraquero,et al.  Large-scale quantum-emitter arrays in atomically thin semiconductors , 2016, Nature Communications.

[11]  K. Novoselov,et al.  2D materials and van der Waals heterostructures , 2016, Science.

[12]  E. Andrei,et al.  Strained fold-assisted transport in graphene systems , 2016, 1604.00732.

[13]  T. Heikkila,et al.  Flat-band superconductivity in strained Dirac materials , 2016, 1601.04505.

[14]  A. Jauho,et al.  Pseudomagnetic fields and triaxial strain in graphene , 2015, 1510.07895.

[15]  F. Guinea,et al.  Novel effects of strains in graphene and other two dimensional materials , 2015, 1503.00747.

[16]  S. V. Kusminskiy,et al.  Local sublattice symmetry breaking for graphene with a centrosymmetric deformation , 2015, 1501.02981.

[17]  Evelyn Tang,et al.  Strain-induced partially flat band, helical snake states and interface superconductivity in topological crystalline insulators , 2014, Nature Physics.

[18]  L. Covaci,et al.  Electronic structure of a hexagonal graphene flake subjected to triaxial stress , 2013, 1404.4966.

[19]  F. Peeters,et al.  Electronic states in a graphene flake strained by a Gaussian bump , 2013, 1307.5190.

[20]  F. Peeters,et al.  Pseudo magnetic field in strained graphene: Revisited , 2013, 1304.0629.

[21]  Xu Du,et al.  Electronic properties of graphene: a perspective from scanning tunneling microscopy and magnetotransport , 2012, Reports on progress in physics. Physical Society.

[22]  Francisco Guinea,et al.  Designer Dirac fermions and topological phases in molecular graphene , 2012, Nature.

[23]  Pablo Jarillo-Herrero,et al.  Emergence of superlattice Dirac points in graphene on hexagonal boron nitride , 2012, Nature Physics.

[24]  E. Andrei,et al.  Self-navigation of a scanning tunneling microscope tip toward a micron-sized graphene sample. , 2011, The Review of scientific instruments.

[25]  Zhigang Suo,et al.  Periodic patterns and energy states of buckled films on compliant substrates , 2011 .

[26]  G. E. Volovik,et al.  High-temperature surface superconductivity in topological flat-band systems , 2011, 1103.2033.

[27]  A. Reina,et al.  Single-layer behavior and its breakdown in twisted graphene layers. , 2010, Physical review letters.

[28]  R. Bistritzer,et al.  Moiré bands in twisted double-layer graphene , 2010, Proceedings of the National Academy of Sciences.

[29]  A. Zettl,et al.  Strain-Induced Pseudo–Magnetic Fields Greater Than 300 Tesla in Graphene Nanobubbles , 2010, Science.

[30]  A. Reina,et al.  Observation of Van Hove singularities in twisted graphene layers , 2009, 0912.2102.

[31]  P. Kim,et al.  Observation of the fractional quantum Hall effect in graphene , 2009, Nature.

[32]  Fabian Duerr,et al.  Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene , 2009, Nature.

[33]  F. Guinea,et al.  Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering , 2009, 0909.1787.

[34]  C. N. Lau,et al.  Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. , 2009, Nature nanotechnology.

[35]  E. Andrei,et al.  Scanning tunneling microscopy and spectroscopy of graphene layers on graphite , 2009 .

[36]  F. Peeters,et al.  Tuning of energy levels and optical properties of graphene quantum dots , 2008, 0805.0454.

[37]  J. Brink,et al.  Doping graphene with metal contacts. , 2008, Physical review letters.

[38]  G. Wellein,et al.  The kernel polynomial method , 2005, cond-mat/0504627.

[39]  L. Mahadevan,et al.  Geometry and physics of wrinkling. , 2003, Physical review letters.

[40]  Williams,et al.  Observation of a magnetically induced Wigner solid. , 1988, Physical review letters.

[41]  R. Walker β ℕ Revisited , 1974 .