CCDA: a concise corner detection algorithm

In this article, the authors propose a concise corner detection algorithm, which is called CCDA. A cascade classifier concept is used to derive a corner detector, which can quickly discard the most non-corner pixels. The ruler of gradient direction is used to get the corner, which can avoid the influence of the light change. The method of second derivative non-maximum suppression is used to get the location of the corner and can get the exact corner point. As a result, CCDA is compare-tested with classical corner detection algorithms by using the same images which include synthetic corner patterns and real images. The result shows that CCDA has a similar speed to the FAST algorithm and better accuracy and robustness than the HARRIS algorithm.

[1]  Andrea Vedaldi,et al.  HPatches: A Benchmark and Evaluation of Handcrafted and Learned Local Descriptors , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  Luis Álvarez,et al.  Affine Morphological Multiscale Analysis of Corners and Multiple Junctions , 1997, International Journal of Computer Vision.

[3]  Cordelia Schmid,et al.  Local Grayvalue Invariants for Image Retrieval , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[5]  Scott T. Acton,et al.  Spatial domain digital watermarking of multimedia objects for buyer authentication , 2004, IEEE Transactions on Multimedia.

[6]  Matti Pietikäinen,et al.  Computer Vision Using Local Binary Patterns , 2011, Computational Imaging and Vision.

[7]  Shujun Zhang,et al.  Single image 3D reconstruction based on control point grid , 2018, Multimedia Tools and Applications.

[8]  Yongdong Zhang,et al.  A Fast Uyghur Text Detector for Complex Background Images , 2018, IEEE Transactions on Multimedia.

[9]  Paul L. Rosin Measuring Corner Properties , 1999, Comput. Vis. Image Underst..

[10]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[11]  Luis Álvarez,et al.  Corner Detection Using the Affine Morphological Scale Space , 2017, SSVM.

[12]  Qionghai Dai,et al.  Cross-Modality Bridging and Knowledge Transferring for Image Understanding , 2019, IEEE Transactions on Multimedia.

[13]  Yan Yan,et al.  Joint Deep Learning of Facial Expression Synthesis and Recognition , 2020, IEEE Transactions on Multimedia.

[14]  Larry S. Davis,et al.  A survey of edge detection techniques , 1975 .

[15]  S. M. Steve SUSAN - a new approach to low level image processing , 1997 .

[16]  Tamio Takamura,et al.  Alternative Approach for Satellite Cloud Classification: Edge Gradient Application , 2013 .

[17]  Gary R. Bradski,et al.  ORB: An efficient alternative to SIFT or SURF , 2011, 2011 International Conference on Computer Vision.

[18]  Scott Krig,et al.  Computer Vision Metrics: Survey, Taxonomy, and Analysis , 2014 .

[19]  Vincent Lepetit,et al.  BRIEF: Computing a Local Binary Descriptor Very Fast , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Hans P. Moravec Obstacle avoidance and navigation in the real world by a seeing robot rover , 1980 .

[21]  Vincent Lepetit,et al.  BRIEF: Binary Robust Independent Elementary Features , 2010, ECCV.

[22]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[23]  Tom Drummond,et al.  Machine Learning for High-Speed Corner Detection , 2006, ECCV.

[24]  Klaus Schöffmann,et al.  Learning laparoscopic video shot classification for gynecological surgery , 2018, Multimedia Tools and Applications.

[25]  Steve R. Gunn Edge detection error in the discrete Laplacian of Gaussian , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[26]  Farzin Mokhtarian,et al.  Curvature scale space for robust image corner detection , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[27]  Anders Hast,et al.  Simple filter design for first and second order derivatives by a double filtering approach , 2014, Pattern Recognit. Lett..

[28]  Roland Siegwart,et al.  BRISK: Binary Robust invariant scalable keypoints , 2011, 2011 International Conference on Computer Vision.