Nonlinear Sparse Hashing

To facilitate fast similarity search, this paper proposes to encode the nonlinear similarity and image structure as compact binary codes. Rather than adopting single matrix as projection in the literature, we employ a nonlinear transformation in the form of multilayer neural network to generate binary codes to capture the local structure between data samples. Specifically, we train the network such that the quantization loss is minimized and the variance over all bits is maximized. In addition, we capture the salient structure of image samples at the abstract level with sparsity constraint and inherit the generalization power to unseen samples. Furthermore, we incorporate the supervisory label information into the learning procedure to take advantage of the manual label. To obtain the desired binary codes and the parameterized nonlinear transformation, we optimize the formulated objective problem over each variable with an iterative alternating method. To validate the efficacy of the proposed hashing approach, we conduct experiments on three widely used datasets, namely CIFAR10, MNIST, and SUN397, by comparing with several recent proposed hashing methods.

[1]  Yang Yang,et al.  Discriminant Cross-modal Hashing , 2016, ICMR.

[2]  Wei Liu,et al.  Supervised Discrete Hashing , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  Miguel Á. Carreira-Perpiñán,et al.  Hashing with binary autoencoders , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[5]  Shiguang Shan,et al.  Deep Supervised Hashing for Fast Image Retrieval , 2016, International Journal of Computer Vision.

[6]  Jiwen Lu,et al.  Deep hashing for compact binary codes learning , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Xianglong Liu,et al.  Collaborative Hashing , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[8]  David Suter,et al.  Fast Supervised Hashing with Decision Trees for High-Dimensional Data , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[9]  David J. Fleet,et al.  Hamming Distance Metric Learning , 2012, NIPS.

[10]  Pascal Fua,et al.  LDAHash: Improved Matching with Smaller Descriptors , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Shih-Fu Chang,et al.  Hash Bit Selection: A Unified Solution for Selection Problems in Hashing , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[12]  Weitong Chen,et al.  Multi-task support vector machines for feature selection with shared knowledge discovery , 2016, Signal Process..

[13]  Yoshua Bengio,et al.  Understanding the difficulty of training deep feedforward neural networks , 2010, AISTATS.

[14]  Krista A. Ehinger,et al.  SUN database: Large-scale scene recognition from abbey to zoo , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[15]  Zi Huang,et al.  Multiple feature hashing for real-time large scale near-duplicate video retrieval , 2011, ACM Multimedia.

[16]  Qi Tian,et al.  Batch-Orthogonal Locality-Sensitive Hashing for Angular Similarity , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Antonio Torralba,et al.  Spectral Hashing , 2008, NIPS.

[18]  Zi Huang,et al.  Linear cross-modal hashing for efficient multimedia search , 2013, ACM Multimedia.

[19]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[20]  Shiguang Shan,et al.  Semisupervised Hashing via Kernel Hyperplane Learning for Scalable Image Search , 2014, IEEE Transactions on Circuits and Systems for Video Technology.

[21]  Trevor Darrell,et al.  DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition , 2013, ICML.

[22]  Shiguang Shan,et al.  Face video retrieval with image query via hashing across Euclidean space and Riemannian manifold , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Pushmeet Kohli,et al.  Computationally bounded retrieval , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  Jianmin Wang,et al.  Semantics-preserving hashing for cross-view retrieval , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[25]  Tieniu Tan,et al.  Deep semantic ranking based hashing for multi-label image retrieval , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[26]  Yi Yang,et al.  Action recognition by exploring data distribution and feature correlation , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[27]  Sunil Arya,et al.  An optimal algorithm for approximate nearest neighbor searching fixed dimensions , 1998, JACM.

[28]  Antonio Torralba,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence 1 80 Million Tiny Images: a Large Dataset for Non-parametric Object and Scene Recognition , 2022 .

[29]  Xuelong Li,et al.  Compact Structure Hashing via Sparse and Similarity Preserving Embedding , 2016, IEEE Transactions on Cybernetics.

[30]  Wei Liu,et al.  Learning Hash Codes with Listwise Supervision , 2013, 2013 IEEE International Conference on Computer Vision.

[31]  Wei Liu,et al.  Scalable similarity search with optimized kernel hashing , 2010, KDD.

[32]  Zi Huang,et al.  Sparse hashing for fast multimedia search , 2013, TOIS.

[33]  Fumin Shen,et al.  Inductive Hashing on Manifolds , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[34]  Rongrong Ji,et al.  Supervised hashing with kernels , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[35]  Michael Elad,et al.  Sparse Representation for Color Image Restoration , 2008, IEEE Transactions on Image Processing.

[36]  Seungjin Choi,et al.  Bilinear random projections for locality-sensitive binary codes , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[37]  John Langford,et al.  Hash Kernels for Structured Data , 2009, J. Mach. Learn. Res..

[38]  Jian Sun,et al.  Sparse projections for high-dimensional binary codes , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[39]  Rajat Raina,et al.  Self-taught learning: transfer learning from unlabeled data , 2007, ICML '07.

[40]  Nicu Sebe,et al.  A Survey on Learning to Hash , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  Jian Sun,et al.  Graph Cuts for Supervised Binary Coding , 2014, ECCV.

[42]  Zi Huang,et al.  Effective Multiple Feature Hashing for Large-Scale Near-Duplicate Video Retrieval , 2013, IEEE Transactions on Multimedia.

[43]  Xianglong Liu,et al.  Multiple feature kernel hashing for large-scale visual search , 2014, Pattern Recognit..

[44]  Nicu Sebe,et al.  Supervised Hashing with Pseudo Labels for Scalable Multimedia Retrieval , 2015, ACM Multimedia.

[45]  Cordelia Schmid,et al.  Aggregating Local Image Descriptors into Compact Codes , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  Zi Huang,et al.  Robust Hashing With Local Models for Approximate Similarity Search , 2014, IEEE Transactions on Cybernetics.

[47]  Zi Huang,et al.  A Sparse Embedding and Least Variance Encoding Approach to Hashing , 2014, IEEE Transactions on Image Processing.

[48]  Shiguang Shan,et al.  Two Birds, One Stone: Jointly Learning Binary Code for Large-Scale Face Image Retrieval and Attributes Prediction , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[49]  Jian Yang,et al.  Robust sparse coding for face recognition , 2011, CVPR 2011.

[50]  Laurent Amsaleg,et al.  Supervised Multi-scale Locality Sensitive Hashing , 2015, ICMR.

[51]  Andrea Vedaldi,et al.  MatConvNet: Convolutional Neural Networks for MATLAB , 2014, ACM Multimedia.

[52]  Jian Sun,et al.  K-Means Hashing: An Affinity-Preserving Quantization Method for Learning Binary Compact Codes , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[53]  David J. Fleet,et al.  Minimal Loss Hashing for Compact Binary Codes , 2011, ICML.

[54]  Jonathon Shlens,et al.  Fast, Accurate Detection of 100,000 Object Classes on a Single Machine , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[55]  Yihong Gong,et al.  Linear spatial pyramid matching using sparse coding for image classification , 2009, CVPR.

[56]  Guillermo Sapiro,et al.  Supervised Dictionary Learning , 2008, NIPS.

[57]  Guillermo Sapiro,et al.  Sparse similarity-preserving hashing , 2013, ICLR.

[58]  Wei Liu,et al.  Learning Binary Codes for Maximum Inner Product Search , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[59]  Svetlana Lazebnik,et al.  Iterative quantization: A procrustean approach to learning binary codes , 2011, CVPR 2011.

[60]  Svetlana Lazebnik,et al.  Locality-sensitive binary codes from shift-invariant kernels , 2009, NIPS.

[61]  Chris H. Q. Ding,et al.  R1-PCA: rotational invariant L1-norm principal component analysis for robust subspace factorization , 2006, ICML.

[62]  Guosheng Lin,et al.  Learning Hash Functions Using Column Generation , 2013, ICML.

[63]  Zi Huang,et al.  Inter-media hashing for large-scale retrieval from heterogeneous data sources , 2013, SIGMOD '13.

[64]  Piotr Indyk,et al.  Similarity Search in High Dimensions via Hashing , 1999, VLDB.

[65]  Nicu Sebe,et al.  Compact Image Fingerprint Via Multiple Kernel Hashing , 2015, IEEE Transactions on Multimedia.

[66]  Sakti Pramanik,et al.  An efficient searching algorithm for approximate nearest neighbor queries in high dimensions , 1999, Proceedings IEEE International Conference on Multimedia Computing and Systems.

[67]  Michael Elad,et al.  Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006, IEEE Transactions on Image Processing.

[68]  Xuelong Li,et al.  Query-Adaptive Reciprocal Hash Tables for Nearest Neighbor Search , 2016, IEEE Transactions on Image Processing.

[69]  Wei Liu,et al.  Learning to Hash for Indexing Big Data—A Survey , 2015, Proceedings of the IEEE.

[70]  Prateek Jain,et al.  Fast Similarity Search for Learned Metrics , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[71]  L. Deng,et al.  The MNIST Database of Handwritten Digit Images for Machine Learning Research [Best of the Web] , 2012, IEEE Signal Processing Magazine.

[72]  Xiao Zhang,et al.  Sparse spectral hashing , 2012, Pattern Recognit. Lett..

[73]  Shih-Fu Chang,et al.  Semi-Supervised Hashing for Large-Scale Search , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[74]  Alex Krizhevsky,et al.  Learning Multiple Layers of Features from Tiny Images , 2009 .

[75]  Heng Tao Shen,et al.  Hashing on Nonlinear Manifolds , 2014, IEEE Transactions on Image Processing.

[76]  Tat-Seng Chua,et al.  Discrete Image Hashing Using Large Weakly Annotated Photo Collections , 2016, AAAI.