The method of fundamental solutions for detection of cavities in EIT

In this paper, the method of fundamental solutions (MFS) is used to solve numerically an inverse problem which consists of finding an unknown cavity within a region of interest based on given boundary Cauchy data. A range of examples are used to demonstrate that the technique is very effective at locating cavities in both two- and three-dimensional geometries for exact input data. The technique is then developed to include a regularisation parameter that enables cavities to be located accurately and stably even for noisy input data.

[1]  K. Balakrishnan,et al.  The method of fundamental solutions for linear diffusion-reaction equations , 2000 .

[2]  Ohin Kwon,et al.  Location Search Techniques for a Grounded Conductor , 2002, SIAM J. Appl. Math..

[3]  Enayat Mahajerin,et al.  A comparison of the boundary element and superposition methods , 1984 .

[4]  D. Ingham,et al.  The Method of Fundamental Solutions for Direct Cavity Problems in EIT , 2007 .

[5]  Luca Rondi,et al.  Optimal Stability for the Inverse Problemof Multiple Cavities , 2001 .

[6]  G. Fairweather,et al.  The method of fundamental solutions for problems in potential flow , 1984 .

[7]  R. Kress,et al.  Using fundamental solutions in inverse scattering , 2006 .

[8]  David S. Holder,et al.  Electrical Impedance Tomography : Methods, History and Applications , 2004 .

[9]  Introduction to electrical impedance tomography , 2001 .

[10]  M. Golberg Boundary integral methods : numerical and mathematical aspects , 1999 .

[11]  Houssem Haddar,et al.  Conformal mappings and inverse boundary value problems , 2005 .

[12]  Carlos J. S. Alves,et al.  The direct method of fundamental solutions and the inverse Kirsch- Kress method for the reconstruction of elastic inclusions or cavities , 2009 .

[13]  Rainer Kress,et al.  Nonlinear Integral Equations for Solving Inverse Boundary Value Problems for Inclusions and Cracks , 2006 .

[14]  Rainer Kress,et al.  Inverse Dirichlet problem and conformal mapping , 2004, Math. Comput. Simul..

[15]  Graeme Fairweather,et al.  The method of fundamental solutions for elliptic boundary value problems , 1998, Adv. Comput. Math..

[16]  Brian D. Sleeman,et al.  Reconstruction of an acoustically sound-soft obstacle from one incident field and the far-field pattern , 2007 .

[17]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[18]  Pedro Serranho,et al.  A hybrid method for inverse scattering for Sound-soft obstacles in R3 , 2007 .

[19]  Nuno F. M. Martins,et al.  An iterative MFS approach for the detection of immersed obstacles , 2008 .

[20]  Thomas S. Angell,et al.  On the Two-dimensional Inverse Scattering Problems in Electromagnetics , 2003 .

[21]  A. Bogomolny Fundamental Solutions Method for Elliptic Boundary Value Problems , 1985 .

[22]  Rainer Kress,et al.  On an Integral Equation of the first Kind in Inverse Acoustic Scattering , 1986 .

[23]  Roland Potthast,et al.  The point source method for reconstructing an inclusion from boundary measurements in electrical impedance tomography and acoustic scattering , 2003 .

[24]  Ramani Duraiswami,et al.  Boundary element techniques for efficient 2-D and 3-D electrical impedance tomography , 1997 .

[25]  Joseph A. Paradiso,et al.  Electric Field Sensing For Graphical Interfaces , 1998, IEEE Computer Graphics and Applications.

[26]  Martin Hanke,et al.  Recent progress in electrical impedance tomography , 2003 .

[27]  David Isaacson,et al.  Electrical Impedance Tomography , 1999, SIAM Rev..

[28]  Joshua R. Smith Field Mice: Extracting Hand Geometry from Electric Field Measurements , 1996, IBM Syst. J..