Optical properties of In2O3 from experiment and first-principles theory: influence of lattice screening

[1]  E. Lundgren,et al.  Bulk and surface characterization of In2O3(001) single crystals , 2012, 1804.04478.

[2]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[3]  F. Bechstedt,et al.  Indium-oxide polymorphs from first principles: Quasiparticle electronic states , 2008 .

[4]  Frank Fuchs,et al.  Optical and energy-loss spectra of MgO, ZnO, and CdO from ab initio many-body calculations , 2009 .

[5]  Temperature dependence of the dielectric function in the spectral range (0.5–8.5) eV of an In2O3 thin film , 2014 .

[6]  F. Bechstedt,et al.  Optical absorption in degenerately doped semiconductors: Mott transition or Mahan excitons? , 2011, Physical review letters.

[7]  W. C. Walker,et al.  Exciton spectra of CaO and MgO. , 1969 .

[8]  H. Ohta,et al.  Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors , 2004, Nature.

[9]  R. Uecker,et al.  A novel crystal growth technique from the melt: Levitation-Assisted Self-Seeding Crystal Growth Method , 2014 .

[10]  A. Schleife,et al.  Bethe–Salpeter calculation of optical-absorption spectra of In2O3 and Ga2O3 , 2015 .

[11]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[12]  S. Louie,et al.  Chapter 2 Predicting Materials and Properties: Theory of the Ground and Excited State , 2006 .

[13]  M. Yildirim,et al.  Synthesis, characterization and dielectric properties of SnO2 thin films. , 2014, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[14]  Steffen Ganschow,et al.  Melt growth, characterization and properties of bulk In2O3 single crystals , 2013 .

[15]  A. Hoffmann,et al.  Free excitons in wurtzite GaN , 2001 .

[16]  Frank Fuchs,et al.  Interplay of excitonic effects and van Hove singularities in optical spectra: CaO and AlN polymorphs , 2011 .

[17]  O. Bierwagen,et al.  Many-electron effects on the dielectric function of cubic In 2 O 3 : Effective electron mass, band nonparabolicity, band gap renormalization, and Burstein-Moss shift , 2016 .

[18]  F. Fuchs,et al.  Efficient O(N 2 ) approach to solve the Bethe-Salpeter equation for excitonic bound states , 2008, 0805.0659.

[19]  M. Marques,et al.  Strong renormalization of the electronic band gap due to lattice polarization in the GW formalism. , 2013, Physical review letters.

[20]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[21]  Friedhelm Bechstedt,et al.  EfficientO(N2)method to solve the Bethe-Salpeter equation , 2003 .

[22]  A. Janotti,et al.  Hydrogenated cation vacancies in semiconducting oxides , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[23]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[24]  F. Bechstedt,et al.  Enhanced Optical Absorption Due to Symmetry Breaking in TiO2(1–x)S2x Alloys , 2012 .

[25]  Martin A. Green,et al.  Improved value for the silicon free exciton binding energy , 2013 .

[26]  I. Hamberg,et al.  Evaporated Sn‐doped In2O3 films: Basic optical properties and applications to energy‐efficient windows , 1986 .

[27]  Arthur P. Ramirez,et al.  Oxide Electronics Emerge , 2007, Science.

[28]  Stefan Albrecht Lucia Reining Rodolfo Del Sole Giovanni Onida Ab Initio Calculation of Excitonic Effects in the Optical Spectra of Semiconductors , 1998 .

[29]  R. Helbig,et al.  Band-Gap Assignment in SnO 2 by Two-Photon Spectroscopy , 1978 .

[30]  F. Bechstedt,et al.  Tin dioxide from first principles: Quasiparticle electronic states and optical properties , 2011 .

[31]  M. Shishkin,et al.  Quasiparticle band structure based on a generalized Kohn-Sham scheme , 2007 .

[32]  K. F. Young,et al.  Compilation of the Static Dielectric Constant of Inorganic Solids , 1973 .

[33]  R. Girlanda,et al.  Optical properties of semiconductors within the independent-quasiparticle approximation. , 1993, Physical review. B, Condensed matter.

[34]  Martin Feneberg,et al.  High-excitation and high-resolution photoluminescence spectra of bulk AlN , 2010 .

[35]  R. H. Lyddane,et al.  On the Polar Vibrations of Alkali Halides , 1941 .

[36]  Lucia Reining,et al.  An efficient method for calculating quasiparticle energies in semiconductors , 1992 .

[37]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[38]  Walter R. L. Lambrecht,et al.  Lattice polarization effects on the screened Coulomb interaction $W$ of the GW approximation , 2017, 1706.10252.

[39]  Friedhelm Bechstedt,et al.  Ab initio description of quasiparticle band structures and optical near-edge absorption of transparent conducting oxides , 2012 .

[40]  O. Bierwagen,et al.  Anisotropy of the electron effective mass in rutile SnO2 determined by infrared ellipsometry , 2014 .

[41]  R. Kronig On the Theory of Dispersion of X-Rays , 1926 .

[42]  F. Bechstedt,et al.  Bulk excitonic effects in surface optical spectra. , 2001, Physical review letters.

[43]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[44]  U. Rössler New Data and Updates for IV-IV, III-V, II-VI and I-VII Compounds, their Mixed Crystals and Diluted Magnetic Semiconductors , 2011 .

[45]  F. Bechstedt,et al.  Quasiparticle bands and spectra of Ga 2 O 3 polymorphs , 2016 .

[46]  F. Bechstedt,et al.  Band gap and effective electron mass of cubic InN , 2008 .

[47]  F. Bechstedt,et al.  Linear optical properties in the projector-augmented wave methodology , 2006 .

[48]  H. Ehrenreich,et al.  Self-Consistent Field Approach to the Many-Electron Problem , 1959 .

[49]  Frank Fuchs,et al.  Ab initiotheory of excitons and optical properties for spin-polarized systems: Application to antiferromagnetic MnO , 2008 .

[50]  O. Bierwagen,et al.  Erratum: Many-electron effects on the dielectric function of cubic In2O3 : Effective electron mass, band nonparabolicity, band gap renormalization, and Burstein-Moss shift [Phys. Rev. B 93 , 045203 (2016)] , 2016 .

[51]  L. Reining,et al.  Electronic excitations: density-functional versus many-body Green's-function approaches , 2002 .

[52]  L. Hedin NEW METHOD FOR CALCULATING THE ONE-PARTICLE GREEN'S FUNCTION WITH APPLICATION TO THE ELECTRON-GAS PROBLEM , 1965 .

[53]  F. Bechstedt,et al.  Ab initiocalculation of optical properties with excitonic effects in wurtzite InxGa1−xN and InxAl1−xN alloys , 2013 .

[54]  F. Bechstedt,et al.  Quasiparticle bands and optical spectra of highly ionic crystals: AlN and NaCl , 2005 .

[55]  N. Esser,et al.  Band gap renormalization and Burstein-Moss effect in silicon- and germanium-doped wurtzite GaN up to 10 20 cm − 3 , 2014 .

[56]  C. Cobet,et al.  A synchrotron-radiation-based variable angle ellipsometer for the visible to vacuum ultraviolet spectral range. , 2014, The Review of scientific instruments.

[57]  V. Riede,et al.  Infrared lattice vibrations of In2O3 , 1990 .

[58]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[59]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.