Optical properties of In2O3 from experiment and first-principles theory: influence of lattice screening
暂无分享,去创建一个
Zbigniew Galazka | Andre Schleife | Alexander Gottwald | Martin Feneberg | Rüdiger Goldhahn | Norbert Esser | N. Esser | A. Gottwald | A. Schleife | Jakob Nixdorf | M. Feneberg | R. Goldhahn | M. Neumann | Jakob Nixdorf | Maciej D. Neumann | Z. Galazka
[1] E. Lundgren,et al. Bulk and surface characterization of In2O3(001) single crystals , 2012, 1804.04478.
[2] P. Hohenberg,et al. Inhomogeneous Electron Gas , 1964 .
[3] F. Bechstedt,et al. Indium-oxide polymorphs from first principles: Quasiparticle electronic states , 2008 .
[4] Frank Fuchs,et al. Optical and energy-loss spectra of MgO, ZnO, and CdO from ab initio many-body calculations , 2009 .
[5] Temperature dependence of the dielectric function in the spectral range (0.5–8.5) eV of an In2O3 thin film , 2014 .
[6] F. Bechstedt,et al. Optical absorption in degenerately doped semiconductors: Mott transition or Mahan excitons? , 2011, Physical review letters.
[7] W. C. Walker,et al. Exciton spectra of CaO and MgO. , 1969 .
[8] H. Ohta,et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors , 2004, Nature.
[9] R. Uecker,et al. A novel crystal growth technique from the melt: Levitation-Assisted Self-Seeding Crystal Growth Method , 2014 .
[10] A. Schleife,et al. Bethe–Salpeter calculation of optical-absorption spectra of In2O3 and Ga2O3 , 2015 .
[11] H. Monkhorst,et al. SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .
[12] S. Louie,et al. Chapter 2 Predicting Materials and Properties: Theory of the Ground and Excited State , 2006 .
[13] M. Yildirim,et al. Synthesis, characterization and dielectric properties of SnO2 thin films. , 2014, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
[14] Steffen Ganschow,et al. Melt growth, characterization and properties of bulk In2O3 single crystals , 2013 .
[15] A. Hoffmann,et al. Free excitons in wurtzite GaN , 2001 .
[16] Frank Fuchs,et al. Interplay of excitonic effects and van Hove singularities in optical spectra: CaO and AlN polymorphs , 2011 .
[17] O. Bierwagen,et al. Many-electron effects on the dielectric function of cubic In 2 O 3 : Effective electron mass, band nonparabolicity, band gap renormalization, and Burstein-Moss shift , 2016 .
[18] F. Fuchs,et al. Efficient O(N 2 ) approach to solve the Bethe-Salpeter equation for excitonic bound states , 2008, 0805.0659.
[19] M. Marques,et al. Strong renormalization of the electronic band gap due to lattice polarization in the GW formalism. , 2013, Physical review letters.
[20] Gustavo E. Scuseria,et al. Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .
[21] Friedhelm Bechstedt,et al. EfficientO(N2)method to solve the Bethe-Salpeter equation , 2003 .
[22] A. Janotti,et al. Hydrogenated cation vacancies in semiconducting oxides , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.
[23] W. Kohn,et al. Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .
[24] F. Bechstedt,et al. Enhanced Optical Absorption Due to Symmetry Breaking in TiO2(1–x)S2x Alloys , 2012 .
[25] Martin A. Green,et al. Improved value for the silicon free exciton binding energy , 2013 .
[26] I. Hamberg,et al. Evaporated Sn‐doped In2O3 films: Basic optical properties and applications to energy‐efficient windows , 1986 .
[27] Arthur P. Ramirez,et al. Oxide Electronics Emerge , 2007, Science.
[28] Stefan Albrecht Lucia Reining Rodolfo Del Sole Giovanni Onida. Ab Initio Calculation of Excitonic Effects in the Optical Spectra of Semiconductors , 1998 .
[29] R. Helbig,et al. Band-Gap Assignment in SnO 2 by Two-Photon Spectroscopy , 1978 .
[30] F. Bechstedt,et al. Tin dioxide from first principles: Quasiparticle electronic states and optical properties , 2011 .
[31] M. Shishkin,et al. Quasiparticle band structure based on a generalized Kohn-Sham scheme , 2007 .
[32] K. F. Young,et al. Compilation of the Static Dielectric Constant of Inorganic Solids , 1973 .
[33] R. Girlanda,et al. Optical properties of semiconductors within the independent-quasiparticle approximation. , 1993, Physical review. B, Condensed matter.
[34] Martin Feneberg,et al. High-excitation and high-resolution photoluminescence spectra of bulk AlN , 2010 .
[35] R. H. Lyddane,et al. On the Polar Vibrations of Alkali Halides , 1941 .
[36] Lucia Reining,et al. An efficient method for calculating quasiparticle energies in semiconductors , 1992 .
[37] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[38] Walter R. L. Lambrecht,et al. Lattice polarization effects on the screened Coulomb interaction $W$ of the GW approximation , 2017, 1706.10252.
[39] Friedhelm Bechstedt,et al. Ab initio description of quasiparticle band structures and optical near-edge absorption of transparent conducting oxides , 2012 .
[40] O. Bierwagen,et al. Anisotropy of the electron effective mass in rutile SnO2 determined by infrared ellipsometry , 2014 .
[41] R. Kronig. On the Theory of Dispersion of X-Rays , 1926 .
[42] F. Bechstedt,et al. Bulk excitonic effects in surface optical spectra. , 2001, Physical review letters.
[43] Kresse,et al. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.
[44] U. Rössler. New Data and Updates for IV-IV, III-V, II-VI and I-VII Compounds, their Mixed Crystals and Diluted Magnetic Semiconductors , 2011 .
[45] F. Bechstedt,et al. Quasiparticle bands and spectra of Ga 2 O 3 polymorphs , 2016 .
[46] F. Bechstedt,et al. Band gap and effective electron mass of cubic InN , 2008 .
[47] F. Bechstedt,et al. Linear optical properties in the projector-augmented wave methodology , 2006 .
[48] H. Ehrenreich,et al. Self-Consistent Field Approach to the Many-Electron Problem , 1959 .
[49] Frank Fuchs,et al. Ab initiotheory of excitons and optical properties for spin-polarized systems: Application to antiferromagnetic MnO , 2008 .
[50] O. Bierwagen,et al. Erratum: Many-electron effects on the dielectric function of cubic In2O3 : Effective electron mass, band nonparabolicity, band gap renormalization, and Burstein-Moss shift [Phys. Rev. B 93 , 045203 (2016)] , 2016 .
[51] L. Reining,et al. Electronic excitations: density-functional versus many-body Green's-function approaches , 2002 .
[52] L. Hedin. NEW METHOD FOR CALCULATING THE ONE-PARTICLE GREEN'S FUNCTION WITH APPLICATION TO THE ELECTRON-GAS PROBLEM , 1965 .
[53] F. Bechstedt,et al. Ab initiocalculation of optical properties with excitonic effects in wurtzite InxGa1−xN and InxAl1−xN alloys , 2013 .
[54] F. Bechstedt,et al. Quasiparticle bands and optical spectra of highly ionic crystals: AlN and NaCl , 2005 .
[55] N. Esser,et al. Band gap renormalization and Burstein-Moss effect in silicon- and germanium-doped wurtzite GaN up to 10 20 cm − 3 , 2014 .
[56] C. Cobet,et al. A synchrotron-radiation-based variable angle ellipsometer for the visible to vacuum ultraviolet spectral range. , 2014, The Review of scientific instruments.
[57] V. Riede,et al. Infrared lattice vibrations of In2O3 , 1990 .
[58] G. Kresse,et al. From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .
[59] Blöchl,et al. Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.