Firm-Heterogeneous Biased Technological Change: A nonparametric approach under endogeneity

We propose a fully nonparametric framework to test to what extent technological change is factor-biased and heterogeneous. We show in a Monte Carlo simulation that our framework resolves the endogeneity issue between productivity and input choice and provides accurate estimates of firm-specific biases. For all Belgian manufacturing industries analyzed, we reject the predominant assumption of Hicks-neutral technological change over the period 1996–2015. We find that technological change is skill-biased, capital saving and domestic materials using. Moreover, we find significant heterogeneity in the pattern of technological change between and within industries. Relying on a rich dataset of firm characteristics, we provide robust indications that firm-level technological change can be attributed to specific firm strategies and technological characteristics.

[1]  D. Raval The micro elasticity of substitution and non‐neutral technology , 2019, The RAND Journal of Economics.

[2]  James A. Levinsohn,et al.  Estimating Production Functions Using Inputs to Control for Unobservables , 2003 .

[3]  A. Heshmati,et al.  Parametric Approaches to Productivity Measurement: A Comparison among Alternative Models , 1999 .

[4]  Peter K. Schott,et al.  Products and Productivity , 2005 .

[5]  Peter K. Schott,et al.  The Empirics of Firm Heterogeneity and International Trade , 2011 .

[6]  Barnabé Walheer,et al.  Growth and convergence of the OECD countries: A multi-sector production-frontier approach , 2016, Eur. J. Oper. Res..

[7]  Jeffrey S. Racine,et al.  Nonparametric Estimation of Regression Functions in the Presence of Irrelevant Regressors , 2007, The Review of Economics and Statistics.

[8]  D. Acemoglu Directed Technical Change , 2001 .

[9]  Federico Trionfetti,et al.  Firm-level comparative advantage , 2013 .

[10]  Léopold Simar,et al.  A fully nonparametric stochastic frontier model for panel data , 2005 .

[11]  Endre Bjørndal,et al.  Finding the right yardstick: Regulation of electricity networks under heterogeneous environments , 2018, Eur. J. Oper. Res..

[12]  Léopold Simar,et al.  Introducing Environmental Variables in Nonparametric Frontier Models: a Probabilistic Approach , 2005 .

[13]  P. Bustos Trade Liberalization, Exports, and Technology Upgrading: Evidence on the Impact of MERCOSUR on Argentinian Firms , 2011 .

[14]  U. Doraszelski,et al.  Measuring the Bias of Technological Change , 2014, Journal of Political Economy.

[15]  A. Atkinson,et al.  A New View of Technological Change , 1969 .

[16]  Benjamin Hampf,et al.  Estimating the bias in technical change: A nonparametric approach , 2017 .

[17]  James D. Adams,et al.  The Structure of Firm R&D, the Factor Intensity of Production, and Skill Bias , 1999, Review of Economics and Statistics.

[18]  Badi H. Baltagi,et al.  A General Index of Technical Change , 1988, Journal of Political Economy.

[19]  José Manuel Cordero-Ferrera,et al.  Exploring factors affecting the level of happiness across countries: A conditional robust nonparametric frontier analysis , 2017, Eur. J. Oper. Res..

[20]  Robin C. Sickles,et al.  Panel estimators and the identification of firm-specific efficiency levels in parametric, semiparametric and nonparametric settings , 2005 .

[21]  Amit Gandhi,et al.  On the Identification of Gross Output Production Functions , 2020, Journal of Political Economy.

[22]  A. Yatchew,et al.  Nonparametric Regression Techniques in Economics , 1998 .

[23]  Daniel Santín,et al.  Dealing with endogeneity in data envelopment analysis applications , 2017, Expert Syst. Appl..

[24]  D. McFadden,et al.  Measurement of the Elasticity of Factor Substitution and Bias of Technical Change , 1978 .

[25]  A. Pakes,et al.  The Dynamics of Productivity in the Telecommunications Equipment Industry , 1992 .

[26]  C. A. Knox Lovell,et al.  Extended Hicks Neutral Technical Change , 1976 .

[27]  C. Syverson What Determines Productivity? , 2010 .

[28]  Subal C. Kumbhakar,et al.  Productivity and efficiency estimation: A semiparametric stochastic cost frontier approach , 2015, Eur. J. Oper. Res..

[29]  Jan De Loecker,et al.  Product Differentiation, Multi-Product Firms and Estimating the Impact of Trade Liberalization on Productivity , 2007 .

[30]  Christopher F. Parmeter,et al.  Estimation and inference under economic restrictions , 2014 .

[31]  Hongsong Zhang Non-neutral technology, firm heterogeneity, and labor demand , 2019, Journal of Development Economics.

[32]  J. Konings,et al.  Importers, Exporters, and Exchange Rate Disconnect , 2012 .

[33]  R. Färe,et al.  Biased Technical Change and the Malmquist Productivity Index , 1995 .

[34]  Mirabelle Muûls,et al.  Imports and Exports at the Level of the Firm: Evidence from Belgium , 2007 .

[35]  Daniel A. Ackerberg,et al.  Identification Properties of Recent Production Function Estimators , 2015 .

[36]  Marijn Verschelde,et al.  Is there a prison size dilemma? An empirical analysis of output-specific economies of scale , 2017, Eur. J. Oper. Res..

[37]  Valentin Zelenyuk,et al.  Generalized nonparametric smoothing with mixed discrete and continuous data , 2016, Comput. Stat. Data Anal..

[38]  W. H. Andrews Random Simultaneous Equations and the Theory of Production , 1944 .

[39]  S. Redding,et al.  Heterogeneous Firms and Trade , 2012 .

[40]  Marc J. Melitz The Impact of Trade on Intra-Industry Reallocations and Aggregate Industry Productivity , 2003 .

[41]  S. Kumbhakar,et al.  Biases in approximating log production , 2011 .

[42]  Daron Acemoglu,et al.  Offshoring and Directed Technical Change , 2012 .

[43]  Jeffrey S. Racine,et al.  Nonparametric estimation of regression functions with both categorical and continuous data , 2004 .

[44]  Léopold Simar,et al.  Unobserved heterogeneity and endogeneity in nonparametric frontier estimation , 2016 .

[45]  Daniel Santín,et al.  Testing the accuracy of DEA estimates under endogeneity through a Monte Carlo simulation , 2015, Eur. J. Oper. Res..

[46]  Michael T. Koch,et al.  Foreign ownership and skill-biased technological change , 2017, Journal of International Economics.

[47]  Bruno Merlevede,et al.  Multinational Networks, Domestic,and Foreign Firms in Europe , 2015 .

[48]  S. Yeaple A simple model of firm heterogeneity, international trade, and wages , 2005 .

[49]  Joel Rodrigue,et al.  Does Importing Intermediates Increase the Demand for Skilled Workers? Plant-Level Evidence from Indonesia , 2013, SSRN Electronic Journal.

[50]  J. Wooldridge On estimating firm-level production functions using proxy variables to control for unobservables , 2009 .

[51]  W. Diewert,et al.  Flexible Functional Forms and Global Curvature Conditions , 1989 .

[52]  Maria Bas Technology Adoption, Export Status, and Skill Upgrading: Theory and Evidence , 2012 .