A Metropolis Monte Carlo implementation of bayesian time-domain parameter estimation: application to coupling constant estimation from antiphase multiplets.
暂无分享,去创建一个
[1] W. Hutton,et al. Comparison of Fourier and Bayesian analysis of nmr signals. I. Well-separated resonances (the single-frequency case) , 1992 .
[2] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[3] P E Wright,et al. Use of chemical shifts and coupling constants in nuclear magnetic resonance structural studies on peptides and proteins. , 1994, Methods in enzymology.
[4] C. Dobson,et al. Analysis of phi and chi 1 torsion angles for hen lysozyme in solution from 1H NMR spin-spin coupling constants. , 1991, Biochemistry.
[5] William H. Press,et al. The Art of Scientific Computing Second Edition , 1998 .
[6] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[7] R. Freeman,et al. Accurate measurement of coupling constants by J doubling , 1992 .
[8] K OrJ. Numerical Bayesian methods applied to signal processing , 1996 .
[9] G. Bodenhausen,et al. Principles of nuclear magnetic resonance in one and two dimensions , 1987 .
[10] J. Besag,et al. Bayesian Computation and Stochastic Systems , 1995 .
[11] Joseph B. Rosenbach,et al. Mathematical Tables , 1957, Nature.
[12] An evaluation of least-squares fits to COSY spectra as a means of estimating proton—proton coupling constants. I. Simulated test problems , 1994, Journal of biomolecular NMR.
[13] J. Prestegard,et al. Measurement of vicinal couplings from cross peaks in COSY spectra , 1989 .
[14] Gene H. Golub,et al. Matrix computations , 1983 .
[15] R. Chylla,et al. Improved frequency resolution in multidimensional constant-time experiments by multidimensional Bayesian analysis , 1993, Journal of biomolecular NMR.
[16] G. L. Bretthorst. Bayesian ANALYSIS. IV. Noise and computing time considerations , 1991 .
[17] J. Cavanagh. Protein NMR Spectroscopy: Principles and Practice , 1995 .
[18] Paul Bratley,et al. A guide to simulation , 1983 .
[19] Peter Green,et al. Markov chain Monte Carlo in Practice , 1996 .
[20] H. Jeffreys,et al. Theory of probability , 1896 .
[21] J. Kiefer. Introduction to statistical inference , 1987 .
[23] Timothy F. Havel,et al. An evaluation of least-squares fits to COSY spectra as a means of estimating proton—proton coupling constants II. Applications to polypeptides , 1994, Journal of biomolecular NMR.
[24] K. Vines,et al. Improved resolution of spectral splittings via bayesian spectral analysis , 1992 .
[25] F. Young. Biochemistry , 1955, The Indian Medical Gazette.
[26] G. Larry Bretthorst,et al. Bayesian analysis. II. Signal detection and model selection , 1990 .
[27] Piero Barone,et al. Bayesian estimation of parameters of a damped sinusoidal model by a Markov chain Monte Carlo method , 1997, IEEE Trans. Signal Process..
[28] C. Robert. The Bayesian choice : a decision-theoretic motivation , 1996 .
[29] G. L. Bretthorst. Bayesian analysis. V : Amplitude estimation for multiple well-separated sinusoids , 1992 .
[30] R. Chylla,et al. Theory and application of the maximum likelihood principle to NMR parameter estimation of multidimensional NMR data , 1995, Journal of biomolecular NMR.
[31] G. L. Bretthorst. Bayesian analysis. I. Parameter estimation using quadrature NMR models , 1990 .
[32] G. Larry Bretthorst,et al. Bayesian analysis. III. Applications to NMR signal detection, model selection, and parameter estimation , 1990 .
[33] F. A. Seiler,et al. Numerical Recipes in C: The Art of Scientific Computing , 1989 .
[34] J. Prestegard,et al. NMR STUDIES OF A 13C, 15N-LABELED GM4-LACTAM GLYCOLIPID AT AN ORIENTED MODEL-MEMBRANE INTERFACE , 1996 .