Dynamic Voronoi Diagrams in Motion Planning

Given a set of n points in the Euclidean plane each of which is continuously moving along a given trajectory. At each instant of time, these points define a Voronoi diagram which also changes continuously, except for certain critical instances — so-called topological events.

[1]  Bernard Chazelle,et al.  An Improved Algorithm for Constructing k th-Order Voronoi Diagrams , 1987, IEEE Trans. Computers.

[2]  Hiroshi Imai,et al.  Minimax geometric fitting of two corresponding sets of points , 1989, SCG '89.

[3]  Leonidas J. Guibas,et al.  Voronoi Diagrams of Moving Points in the Plane , 1991, WG.

[4]  Hiroshi Imai,et al.  Maximin location of convex objects in a polygon and related dynamic Voronoi diagrams , 1990, SCG '90.

[5]  Hartmut Noltemeier Computational Geometry and its Applications , 1988 .

[6]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[7]  Chee-Keng Yap,et al.  A "Retraction" Method for Planning the Motion of a Disc , 1985, J. Algorithms.

[8]  Leonidas J. Guibas,et al.  A linear-time algorithm for computing the voronoi diagram of a convex polygon , 1987, Discret. Comput. Geom..

[9]  Thomas Roos k-Nearest-Neighbor Voronoi Diagrams for Sets of Convex Polygons, Line Segments and Points , 1989, WG.

[10]  M. Iri,et al.  Construction of the Voronoi diagram for 'one million' generators in single-precision arithmetic , 1992, Proc. IEEE.

[11]  Michael Ian Shamos,et al.  Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[12]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[13]  Chee-Keng Yap,et al.  AnO(n logn) algorithm for the voronoi diagram of a set of simple curve segments , 1987, Discret. Comput. Geom..

[14]  Heinrich Müller,et al.  Collision avoidance for nonrigid objects , 1988, ZOR Methods Model. Oper. Res..

[15]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.