Dynamic Voronoi Diagrams in Motion Planning
暂无分享,去创建一个
[1] Bernard Chazelle,et al. An Improved Algorithm for Constructing k th-Order Voronoi Diagrams , 1987, IEEE Trans. Computers.
[2] Hiroshi Imai,et al. Minimax geometric fitting of two corresponding sets of points , 1989, SCG '89.
[3] Leonidas J. Guibas,et al. Voronoi Diagrams of Moving Points in the Plane , 1991, WG.
[4] Hiroshi Imai,et al. Maximin location of convex objects in a polygon and related dynamic Voronoi diagrams , 1990, SCG '90.
[5] Hartmut Noltemeier. Computational Geometry and its Applications , 1988 .
[6] Michael Ian Shamos,et al. Computational geometry: an introduction , 1985 .
[7] Chee-Keng Yap,et al. A "Retraction" Method for Planning the Motion of a Disc , 1985, J. Algorithms.
[8] Leonidas J. Guibas,et al. A linear-time algorithm for computing the voronoi diagram of a convex polygon , 1987, Discret. Comput. Geom..
[9] Thomas Roos. k-Nearest-Neighbor Voronoi Diagrams for Sets of Convex Polygons, Line Segments and Points , 1989, WG.
[10] M. Iri,et al. Construction of the Voronoi diagram for 'one million' generators in single-precision arithmetic , 1992, Proc. IEEE.
[11] Michael Ian Shamos,et al. Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).
[12] Franz Aurenhammer,et al. Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.
[13] Chee-Keng Yap,et al. AnO(n logn) algorithm for the voronoi diagram of a set of simple curve segments , 1987, Discret. Comput. Geom..
[14] Heinrich Müller,et al. Collision avoidance for nonrigid objects , 1988, ZOR Methods Model. Oper. Res..
[15] Leonidas J. Guibas,et al. Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.