An Introduction to the Dynamics of Trojan Asteroids

[1]  R. Dvorak,et al.  The dynamics of inclined Neptune Trojans , 2008 .

[2]  J. Lissauer,et al.  Solar and planetary destabilization of the Earth–Moon triangular Lagrangian points , 2008 .

[3]  R. Dvorak,et al.  Nekhoroshev stability at L4 or L5 in the elliptic‐restricted three‐body problem – application to Trojan asteroids , 2008 .

[4]  R. Gil-Hutton,et al.  Taxonomy of asteroid families among the Jupiter Trojans: comparison between spectroscopic data and the Sloan Digital Sky Survey colors , 2007, 0712.0046.

[5]  A. Brunini,et al.  Collisional and dynamical evolution of the L4 Trojan asteroids , 2007 .

[6]  P. Robutel,et al.  The resonant structure of Jupiter's Trojan asteroids – I. Long‐term stability and diffusion , 2006 .

[7]  A. Morbidelli,et al.  The population of Near Earth Asteroids in coorbital motion with Venus , 2006 .

[8]  F. Marzari,et al.  The Instability of Venus Trojans , 2005 .

[9]  C. Efthymiopoulos,et al.  Optimized Nekhoroshev stability estimates for the Trojan asteroids with a symplectic mapping model of co-orbital motion , 2005 .

[10]  K. Meyer,et al.  Elliptic relative equilibria in the N-body problem , 2005 .

[11]  Àngel Jorba,et al.  On the construction of the Kolmogorov normal form for the Trojan asteroids , 2005 .

[12]  F. Marzari,et al.  Dynamics of Mars Trojans , 2005 .

[13]  K. Tsiganis,et al.  Chaotic capture of Jupiter's Trojan asteroids in the early Solar System , 2005, Nature.

[14]  K. Tsiganis,et al.  Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets , 2005, Nature.

[15]  K. Tsiganis,et al.  Origin of the orbital architecture of the giant planets of the Solar System , 2005, Nature.

[16]  R. Dvorak,et al.  On the Stability Regions of the Trojan Asteroids , 2005 .

[17]  P. Robutel,et al.  THE OBSERVED TROJANS AND THE GLOBAL DYNAMICS AROUND THE LAGRANGIAN POINTS OF THE SUN-JUPITER SYSTEM , 2005 .

[18]  P. Chodas,et al.  Transient co-orbital asteroids , 2004 .

[19]  Àngel Jorba,et al.  ON THE ACCURACY OF RESTRICTED THREE-BODY MODELS FOR THE TROJAN MOTION , 2004 .

[20]  F. Gabern,et al.  Generalizing the restricted three-body problem. The Bianular and Tricircular coherent problems , 2004 .

[21]  F. Marzari,et al.  The MATROS project: Stability of Uranus and Neptune Trojans. The case of 2001 QR322 , 2003 .

[22]  Tucson,et al.  Survival of Trojan-type companions of Neptune during primordial planet migration , 2003, astro-ph/0305572.

[23]  Luke Dones,et al.  How Long-Lived Are the Hypothetical Trojan Populations of Saturn, Uranus, and Neptune? , 2002 .

[24]  Jacques Laskar,et al.  Partial Reduction in the N-Body Planetary Problem using the Angular Momentum Integral , 2002 .

[25]  A. Morbidelli,et al.  The Population of Near-Earth Asteroids in Coorbital Motion with the Earth , 2002 .

[26]  S. Mottola,et al.  The Uppsala-DLR Trojan Survey of L4, the preceding Lagrangian cloud of Jupiter , 2002 .

[27]  H. Lehto,et al.  The role of secular resonances on trojans of the terrestrial planets , 2002 .

[28]  G. Roberts Linear Stability of the Elliptic Lagrangian Triangle Solutions in the Three-Body Problem , 2002 .

[29]  F. Roig,et al.  Planetary Migration and the Effects of Mean Motion Resonances on Jupiter’s Trojan Asteroids , 2001 .

[30]  Fernando Roig,et al.  A Semianalytical Model for the Motion of the Trojan Asteroids: Proper Elements and Families , 2001 .

[31]  A. Dokoumetzidis,et al.  Effective stability of the Trojan asteroids , 2000, astro-ph/0012225.

[32]  F. Marzari,et al.  The Role of Secular Resonances in the History of Trojans , 2000 .

[33]  S. Tabachnik,et al.  Asteroids in the inner Solar system - II. Observable properties , 2000, astro-ph/0005405.

[34]  A. Christou A Numerical Survey of Transient Co-orbitals of the Terrestrial Planets , 2000 .

[35]  V. Arnold,et al.  Mathematical aspects of classical and celestial mechanics , 1997 .

[36]  E. Shoemaker,et al.  Dynamical evolution of Jupiter's Trojan asteroids , 1997, Nature.

[37]  W. M. Kaula,et al.  A Study of Orbits near Saturn's Triangular Lagrangian Points , 1996 .

[38]  P. Robutel,et al.  Stability of the planetary three-body problem , 1995 .

[39]  Andrea Milani,et al.  The Trojan asteroid belt: Proper elements, stability, chaos and families , 1993 .

[40]  Jack Wisdom,et al.  Dynamical Stability in the Outer Solar System and the Delivery of Short Period Comets , 1993 .

[41]  S. Mikkola,et al.  A numerical exploration of the evolution of Trojan-type asteroidal orbits , 1992 .

[42]  Kenneth R. Meyer,et al.  Introduction to Hamiltonian Dynamical Systems and the N-Body Problem , 1991 .

[43]  A. Giorgilli,et al.  On the stability of the lagrangian points in the spatial restricted problem of three bodies , 1991 .

[44]  Andrea Milani,et al.  Secular perturbation theory and computation of asteroid proper elements , 1990 .

[45]  S. Mikkola,et al.  Studies on Solar System Dynamics. I. The Stability of Saturnian Trojans , 1989 .

[46]  K. Meyer,et al.  The Stability of the Lagrange Triangular Point and a Theorem of Arnold , 1986 .

[47]  A. Deprit Elimination of the nodes in problems ofn bodies , 1983 .

[48]  N N Nekhoroshev,et al.  AN EXPONENTIAL ESTIMATE OF THE TIME OF STABILITY OF NEARLY-INTEGRABLE HAMILTONIAN SYSTEMS , 1977 .

[49]  A. Markeev Stability of the Triangular Lagrangian Solutions of the Restricted Three-Body Problem in the Three-Dimensional Circular Case. , 1971 .

[50]  T. Gehrels,et al.  Minor Planets and Related Objects. V. The Density of Trojans near the Preceding Lagrangian Point , 1970 .

[51]  V. Szebehely,et al.  Theory of Orbits: The Restricted Problem of Three Bodies , 1967 .

[52]  A. Deprit,et al.  STABILITY OF THE TRIANGULAR LAGRANGIAN POINTS , 1967 .

[53]  J. M. A. Danby,et al.  Stability of the triangular points in the elliptic restricted problem of three bodies , 1964 .

[54]  V. I. Arnol'd,et al.  PROOF OF A THEOREM OF A.?N.?KOLMOGOROV ON THE INVARIANCE OF QUASI-PERIODIC MOTIONS UNDER SMALL PERTURBATIONS OF THE HAMILTONIAN , 1963 .

[55]  F. Gabern The Bianular and Tricircular Coherent Problems , 2003 .

[56]  Alessandro Morbidelli,et al.  Modern celestial mechanics : aspects of solar system dynamics , 2002 .

[57]  Charalampos Skokos,et al.  Stability of the Trojan asteroids , 1997 .

[58]  B. Érdi The Trojan problem , 1996 .

[59]  Andrea Milani,et al.  The Dynamics of the Trojan Asteroids , 1994 .

[60]  L. Galgani,et al.  Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three body problem , 1989 .

[61]  V. Arnold,et al.  Ordinary Differential Equations , 1973 .

[62]  James G. Williams,et al.  Secular Perturbations in the Solar System. , 1969 .