Evaluation of high strength, high conductivity CuNiBe alloys for fusion energy applications

Abstract The unirradiated tensile properties for several different heats and thermomechanical treatment conditions of precipitation strengthened Hycon 3HP™ CuNiBe (Cu–2%Ni–0.35%Be in wt.%) have been measured over the temperature range of 20–500 °C for longitudinal and long transverse orientations. The room temperature electrical conductivity has also been measured for several heats, and the precipitate microstructure was characterized using transmission electron microscopy. The CuNiBe alloys exhibit very good combination of strength and conductivity at room temperature, with yield strengths of 630–725 MPa and electrical conductivities of 65–72% International Annealed Copper Standard (IACS). The strength remained relatively high at all test temperatures, with yield strengths of 420–520 MPa at 500 °C. However, low levels of ductility (

[1]  Joachim Rösler,et al.  A new model-based creep equation for dispersion strengthened materials , 1990 .

[2]  W. R. Hibbard,et al.  Tensile deformation of high-purity copper as a function of temperature, strain rate, and grain size , 1953 .

[3]  P. Karjalainen-Roikonen,et al.  Effect of neutron irradiation on fracture toughness behaviour of copper alloys , 1998 .

[4]  J. H. Hollomon,et al.  Effect of Strain Rate Upon Plastic Flow of Steel , 1944 .

[5]  Steven J. Zinkle,et al.  Analysis of displacement damage and defect production under cascade damage conditions , 1993 .

[6]  Meimei Li,et al.  Fracture behavior of high-strength, high-conductivity copper alloys , 2000 .

[7]  C. Mcmahon,et al.  An Example of Dynamic Embrittlement: Oxygen-Induced Cracking of a Cu-Be Alloy at 200°C , 1996 .

[8]  B. N. Singh,et al.  Effect of heat treatments on precipitate microstructure and mechanical properties of a CuCrZr alloy , 2007 .

[9]  J. O. Ratka,et al.  A high performance beryllium copper alloy for magnet applications , 1994 .

[10]  S. Zinkle,et al.  Physical and Mechanical Properties of Copper and Copper Alloys , 2012 .

[11]  David E. Laughlin,et al.  The sequence of precipitation in Cu-2w/0 Be alloys , 1980 .

[12]  J. H. Hollomon,et al.  Problems in Non‐Elastic Deformation of Metals , 1946 .

[13]  C. Mcmahon,et al.  Brittle behavior of a dilute copper-beryllium alloy at 200°C in air , 1994 .

[14]  Steven J. Zinkle,et al.  Effect of high-dose neutron irradiation on the mechanical properties and structure of copper alloys and Cu/SS joints for ITER applications , 2000 .

[15]  Steven J. Zinkle,et al.  Low-temperature radiation embrittlement of copper alloys , 1996 .

[16]  S. Fabritsiev,et al.  The effect of neutron irradiation on the electrical resistivity of high-strength copper alloys , 1997 .

[17]  Steven J. Zinkle,et al.  Materials challenges for ITER - Current status and future activities , 2007 .

[18]  P. Toft,et al.  The effect of bonding and bakeout thermal cycles on the properties of copper alloys irradiated at 100°C , 1998 .

[19]  R. M. Boothby,et al.  Radiation Effects in Nickel-Based Alloys , 2020, Comprehensive Nuclear Materials.

[20]  Alan K. Miller,et al.  Combining Phenomenology and Physics in Describing the High Temperature Mechanical Behavior of Crystalline Solids , 1979 .

[21]  G. E. Lucas,et al.  Review of small specimen test techniques for irradiation testing , 1990 .

[22]  B. N. Singh,et al.  Effects of heat treatments and neutron irradiation on microstructures and physical and mechanical properties of copper alloys , 1997 .

[23]  J. A. Leuer,et al.  Fusion Nuclear Science Facility Candidates , 2011 .

[24]  J. Groza Heat-resistant dispersion-strengthened copper alloys , 1992 .

[25]  Steven J. Zinkle,et al.  Evaluation of copper alloys for fusion reactor divertor and first wall components , 1996 .

[26]  Zhidan Sun,et al.  Dynamic embrittlement at intermediate temperature in a Cu–Ni–Si alloy , 2008 .

[27]  S. Zinkle,et al.  The effect of neutron spectrum on the mechanical and physical properties of pure copper and copper alloys , 1996 .

[28]  A. Vasudévan,et al.  Grain boundary ductile fracture in precipitation hardened aluminum alloys , 1987 .

[29]  S. Zinkle,et al.  Tensile and fracture toughness properties of neutron-irradiated CuCrZr , 2009 .

[30]  S. Zinkle,et al.  The effect of neutron dose, irradiation and testing temperature on mechanical properties of copper alloys , 1998 .

[31]  G. Listvinsky,et al.  Materials and design aspects of the RIGGATRONTM tokamak , 1984 .

[32]  S. Zinkle,et al.  Specification of CuCrZr alloy properties after various thermo-mechanical treatments and design allowables including neutron irradiation effects , 2011 .

[33]  L. Mansur Theory and experimental background on dimensional changes in irradiated alloys , 1994 .

[34]  Wolfgang J. Choyke,et al.  Ion irradiation effects on high strength, high conductivity copper alloys☆ , 1986 .

[35]  Chihiro Watanabe,et al.  Precipitation Process in a Cu-Ni-Be Alloy , 2011 .

[36]  G. Tartaglia,et al.  Effect of fast-neutron irradiation on tensile properties of precipitation-hardened Cu-Cr-Zr alloy , 1994 .

[37]  S. Fabritsiev,et al.  Effect of high doses of neutron irradiation on physico-mechanical properties of copper alloys for ITER applications , 2005 .

[38]  Louis K. Mansur,et al.  Perspectives on radiation effects in nickel-base alloys for applications in advanced reactors , 2009 .

[39]  Xie Guoliang,et al.  The precipitation behavior and strengthening of a Cu–2.0 wt% Be alloy , 2012 .

[40]  B. N. Singh,et al.  Effects of neutron irradiation on mechanical properties and microstructures of dispersion and precipitation hardened copper alloys , 1996 .

[41]  S. Zinkle,et al.  Fracture mechanism maps in unirradiated and irradiated metals and alloys , 2007 .

[42]  Steven J. Zinkle,et al.  Fracture toughness of copper-base alloys for fusion energy applications , 1999 .

[43]  Chihiro Watanabe,et al.  Precipitation Processes in a Cu-0.9 mass% Be Single Crystal , 2006 .

[44]  Vincent Laporte,et al.  Intermediate temperature embrittlement of copper alloys , 2009 .