Live cell imaging of SOS and prophage dynamics in isogenic bacterial populations

Almost all bacterial genomes contain DNA of viral origin, including functional prophages or degenerated phage elements. A frequent but often unnoted phenomenon is the spontaneous induction of prophage elements (SPI) even in the absence of an external stimulus. In this study, we have analyzed SPI of the large, degenerated prophage CGP3 (187 kbp), which is integrated into the genome of the Gram‐positive Corynebacterium glutamicum ATCC 13032. Time‐lapse fluorescence microscopy of fluorescent reporter strains grown in microfluidic chips revealed the sporadic induction of the SOS response as a prominent trigger of CGP3 SPI but also displayed a considerable fraction (∼30%) of RecA‐independent SPI. Whereas approx. 20% of SOS‐induced cells recovered from this stress and resumed growth, the spontaneous induction of CGP3 always led to a stop of growth and likely cell death. A carbon source starvation experiment clearly emphasized that SPI only occurs in actively proliferating cells, whereas sporadic SOS induction was still observed in resting cells. These data highlight the impact of sporadic DNA damage on the activity of prophage elements and provide a time‐resolved, quantitative description of SPI as general phenomenon of bacterial populations.

[1]  A. Grossman,et al.  Comparison of Responses to Double-Strand Breaks between Escherichia coli and Bacillus subtilis Reveals Different Requirements for SOS Induction , 2008, Journal of bacteriology.

[2]  J. Kalinowski The Genomes of Amino Acid–Producing Corynebacteria , 2005 .

[3]  H. Chambers,et al.  Mechanism of cell surface expression of the Streptococcus mitis platelet binding proteins PblA and PblB , 2007, Molecular microbiology.

[4]  Wolfgang Wiechert,et al.  A disposable picolitre bioreactor for cultivation and investigation of industrially relevant bacteria on the single cell level. , 2012, Lab on a chip.

[5]  K. Jaqaman,et al.  Robust single particle tracking in live cell time-lapse sequences , 2008, Nature Methods.

[6]  M. Bott,et al.  Population Heterogeneity in Corynebacterium glutamicum ATCC 13032 Caused by Prophage CGP3 , 2008, Journal of bacteriology.

[7]  S. P. Sineoky,et al.  RecA-independent pathways of lambdoid prophage induction in Escherichia coli. , 1998, Journal of bacteriology.

[8]  S. Casjens,et al.  Prophages and bacterial genomics: what have we learned so far? , 2003, Molecular microbiology.

[9]  H. Sahm,et al.  Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon , 1993, Journal of bacteriology.

[10]  Nir Friedman,et al.  Precise Temporal Modulation in the Response of the SOS DNA Repair Network in Individual Bacteria , 2005, PLoS biology.

[11]  James C. W. Locke,et al.  Using movies to analyse gene circuit dynamics in single cells , 2009, Nature Reviews Microbiology.

[12]  S. P. Sineoky,et al.  RecA-Independent Pathways of Lambdoid Prophage Induction in Escherichia coli , 1998 .

[13]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[14]  Timothy J. Foster,et al.  Characterization of a Putative Pathogenicity Island from Bovine Staphylococcus aureus Encoding Multiple Superantigens , 2001, Journal of bacteriology.

[15]  S. Udaka,et al.  Studies on the amino acid fermentation. Part 1. Production of L-glutamic acid by various microorganisms. , 2004, The Journal of general and applied microbiology.

[16]  J. Kalinowski,et al.  Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. , 1994, Gene.

[17]  K. Thormann,et al.  Phage-induced lysis enhances biofilm formation in Shewanella oneidensis MR-1 , 2011, The ISME Journal.

[18]  S. Gottesman,et al.  Cell-division control in Escherichia coli: specific induction of the SOS function SfiA protein is sufficient to block septation. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Andrew Wright,et al.  Robust Growth of Escherichia coli , 2010, Current Biology.

[20]  Rajan P Kulkarni,et al.  Advances in high-throughput single-cell microtechnologies. , 2014, Current opinion in biotechnology.

[21]  C. Shee,et al.  Stress-induced mutation via DNA breaks in Escherichia coli: A molecular mechanism with implications for evolution and medicine , 2012, BioEssays : news and reviews in molecular, cellular and developmental biology.

[22]  Wolfgang Wiechert,et al.  Microfluidic Picoliter Bioreactor for Microbial Single-cell Analysis: Fabrication, System Setup, and Operation , 2013, Journal of visualized experiments : JoVE.

[23]  G. O’Toole,et al.  Interaction between Bacteriophage DMS3 and Host CRISPR Region Inhibits Group Behaviors of Pseudomonas aeruginosa , 2008, Journal of bacteriology.

[24]  Myron F. Goodman,et al.  The importance of repairing stalled replication forks , 2000, Nature.

[25]  Nicholas M. Luscombe,et al.  Evidence of non-random mutation rates suggests an evolutionary risk management strategy , 2012, Nature.

[26]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[27]  R. Kudrna,et al.  λ Lysogens of E. coli reproduce more rapidly than non-lysogens , 1975, Nature.

[28]  D. Court,et al.  Switches in bacteriophage lambda development. , 2005, Annual review of genetics.

[29]  J. A. Halliday,et al.  Engineered proteins detect spontaneous DNA breakage in human and bacterial cells , 2013, eLife.

[30]  Roy Kishony,et al.  Nongenetic Individuality in the Host–Phage Interaction , 2008, PLoS biology.

[31]  Ghislain Fournous,et al.  The impact of prophages on bacterial chromosomes , 2004, Molecular microbiology.

[32]  L. Eggeling,et al.  Handbook of Corynebacterium glutamicum , 2005 .

[33]  Jeffrey W. Roberts,et al.  Nature of the SOS-inducing signal in Escherichia coli. The involvement of DNA replication. , 1990, Journal of molecular biology.

[34]  S. Noack,et al.  Construction of a Prophage-Free Variant of Corynebacterium glutamicum ATCC 13032 for Use as a Platform Strain for Basic Research and Industrial Biotechnology , 2013, Applied and Environmental Microbiology.

[35]  K. Thormann,et al.  Iron Triggers λSo Prophage Induction and Release of Extracellular DNA in Shewanella oneidensis MR-1 Biofilms , 2014, Applied and Environmental Microbiology.

[36]  A. M. Lisewski,et al.  Identity and Function of a Large Gene Network Underlying Mutagenic Repair of DNA Breaks , 2012, Science.

[37]  S. Rosenberg,et al.  Mutation as a Stress Response and the Regulation of Evolvability , 2007, Critical reviews in biochemistry and molecular biology.

[38]  A. Kuzminov Single-strand interruptions in replicating chromosomes cause double-strand breaks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[39]  A. Davidson,et al.  When a virus is not a parasite: the beneficial effects of prophages on bacterial fitness , 2014, Journal of Microbiology.

[40]  Kurt E. Williamson,et al.  Acyl-Homoserine Lactones Can Induce Virus Production in Lysogenic Bacteria: an Alternative Paradigm for Prophage Induction , 2009, Applied and Environmental Microbiology.

[41]  J. Livny,et al.  Characterizing spontaneous induction of Stx encoding phages using a selectable reporter system , 2004, Molecular microbiology.

[42]  L. Eggeling,et al.  Looking for the pick of the bunch: high-throughput screening of producing microorganisms with biosensors. , 2014, Current opinion in biotechnology.

[43]  D. Žgur-Bertok,et al.  Genes regulated by the Escherichia coli SOS repressor LexA exhibit heterogenous expression , 2010, BMC Microbiology.

[44]  K. Thormann,et al.  Impact of Spontaneous Prophage Induction on the Fitness of Bacterial Populations and Host-Microbe Interactions , 2014, Journal of bacteriology.

[45]  M. Neely,et al.  Arrangement and functional identification of genes in the regulatory region of lambdoid phage H-19B, a carrier of a Shiga-like toxin. , 1998, Gene.

[46]  D. McDougald,et al.  The biofilm life cycle and virulence of Pseudomonas aeruginosa are dependent on a filamentous prophage , 2009, The ISME Journal.

[47]  S. Rosenberg,et al.  Spontaneous DNA breakage in single living Escherichia coli cells , 2007, Nature Genetics.

[48]  Timothy B. Stockwell,et al.  Complete Chemical Synthesis, Assembly, and Cloning of a Mycoplasma genitalium Genome , 2008, Science.

[49]  M. Ramirez,et al.  Prophage Spontaneous Activation Promotes DNA Release Enhancing Biofilm Formation in Streptococcus pneumoniae , 2010, PloS one.

[50]  Jon Beckwith,et al.  A bacterial virulence determinant encoded by lysogenic coliphage λ , 1990 .

[51]  Wolfgang Wiechert,et al.  Single-cell microfluidics: opportunity for bioprocess development. , 2014, Current opinion in biotechnology.

[52]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[53]  Tim Tolker-Nielsen,et al.  Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. , 2003, Current opinion in biotechnology.

[54]  James J. Barondess,et al.  A bacterial virulence determinant encoded by lysogenic coliphage λ , 1990, Nature.

[55]  M. Bott,et al.  Co-ordinated regulation of gluconate catabolism and glucose uptake in Corynebacterium glutamicum by two functionally equivalent transcriptional regulators, GntR1 and GntR2 , 2007, Molecular microbiology.

[56]  T. Wood,et al.  Control and benefits of CP4-57 prophage excision in Escherichia coli biofilms , 2009, The ISME Journal.

[57]  M. Inui,et al.  DivS, a novel SOS‐inducible cell‐division suppressor in Corynebacterium glutamicum , 2008, Molecular microbiology.

[58]  Qun Ma,et al.  Cryptic prophages help bacteria cope with adverse environments , 2010, Nature communications.

[59]  J. Petrosino,et al.  Measurement of SOS expression in individual Escherichia coli K‐12 cells using fluorescence microscopy , 2004, Molecular microbiology.

[60]  A. Schmid,et al.  Microfluidic single-cell analysis links boundary environments and individual microbial phenotypes. , 2015, Environmental microbiology.

[61]  H. Sahm,et al.  Cloning the dapA dapB cluster of the lysine-secreting bacterium Corynebacterium glutamicum , 1990, Molecular and General Genetics MGG.

[62]  A. Lwoff LYSOGENY , 1953 .

[63]  M. Bramkamp,et al.  A prophage-encoded actin-like protein required for efficient viral DNA replication in bacteria , 2015, Nucleic acids research.

[64]  M. Bott,et al.  Molecular analysis of the cytochrome bc1-aa3 branch of the Corynebacterium glutamicum respiratory chain containing an unusual diheme cytochrome c1 , 2001, Archives of Microbiology.

[65]  J. Drake Mutations in clusters and showers , 2007, Proceedings of the National Academy of Sciences.

[66]  D. Kohlheyer,et al.  Analysis of SOS-Induced Spontaneous Prophage Induction in Corynebacterium glutamicum at the Single-Cell Level , 2013, Journal of bacteriology.

[67]  Matthew K. Waldor,et al.  Lysogenic Conversion by a Filamentous Phage Encoding Cholera Toxin , 1996, Science.

[68]  F. Repoila,et al.  Enterococcus faecalis Prophage Dynamics and Contributions to Pathogenic Traits , 2013, PLoS genetics.

[69]  J. Drake Too Many Mutants with Multiple Mutations , 2007, Critical reviews in biochemistry and molecular biology.