Dissipation in nanoelectromechanical systems

Abstract This article is a review of the dissipation processes in nanoelectromechanical systems (NEMS). As NEMS technology becomes more and more prevalent in research and engineering applications, it is of great importance to understand the dissipative mechanisms that in part define the dynamic response of such devices. The purpose of this work is to understand, sort, and categorize dominant dissipation sources and to determine their significance with respect to physics processes and engineering considerations.

[1]  A K Chakraborty,et al.  Origin of nanomechanical cantilever motion generated from biomolecular interactions. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Scott S. Verbridge,et al.  Electromechanical Resonators from Graphene Sheets , 2007, Science.

[3]  Internal friction of subnanometer a-SiO2 films. , 1995, Physical review letters.

[4]  Scaling of dissipation in megahertz-range micromechanical diamond oscillators , 2007, cond-mat/0703079.

[5]  Y. Park,et al.  Micromechanical resonators fabricated from lattice-matched and etch-selective GaAs∕InGaP∕GaAs heterostructures , 2007 .

[6]  V. Agache,et al.  Experimental Study of Energy Dissipation in High Quality Factor Hollow Square Plate MEMS Resonators for Liquid Mass Sensing , 2012, Journal of Microelectromechanical Systems.

[7]  H. Espinosa,et al.  Mechanical properties of ultrananocrystalline diamond thin films relevant to MEMS/NEMS devices , 2003 .

[8]  Pritiraj Mohanty,et al.  Spectral response of a gigahertz-range nanomechanical oscillator , 2005 .

[9]  Sebastien Hentz,et al.  Piezoelectric nanoelectromechanical resonators based on aluminum nitride thin films , 2009 .

[10]  Don L. DeVoe,et al.  Piezoelectric thin film micromechanical beam resonators , 2001 .

[11]  K. Jensen,et al.  Limits of Nanomechanical Resonators , 2006, 2006 International Conference on Nanoscience and Nanotechnology.

[12]  J. Teufel,et al.  Measuring nanomechanical motion with a microwave cavity interferometer , 2008, 0801.1827.

[13]  Erik Lucero,et al.  Quantum ground state and single-phonon control of a mechanical resonator , 2010, Nature.

[14]  Michael L. Roukes,et al.  Dynamic range of nanotube- and nanowire-based electromechanical systems , 2005 .

[15]  Daniel Rugar,et al.  Sub-attonewton force detection at millikelvin temperatures , 2001 .

[16]  Matthias Imboden,et al.  Energy measurement in nonlinearly coupled nanomechanical modes , 2011 .

[17]  M. Roukes,et al.  A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator. , 2008, Nature nanotechnology.

[18]  K. Weiss Vibration Problems in Engineering , 1965, Nature.

[19]  Matthias Imboden,et al.  High quality factor gigahertz frequencies in nanomechanical diamond resonators , 2007, 0710.2613.

[20]  S. Purcell,et al.  Ohmic electromechanical dissipation in nanomechanical cantilevers , 2012 .

[21]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[22]  M. K. Andrews,et al.  A comparison of squeeze-film theory with measurements on a microstructure , 1993 .

[23]  Jari Kinaret,et al.  Coupling Mechanics to Charge Transport in Carbon Nanotube Mechanical Resonators , 2009, Science.

[24]  Burkert,et al.  Anomalous frequency dependence of the internal friction of vitreous silica , 2000, Physical review letters.

[25]  M. Roukes,et al.  Nanomechanical torsional resonators for frequency-shift infrared thermal sensing. , 2013, Nano letters.

[26]  Cheng Luo,et al.  Determination of compressive residual stress in a doubly clamped microbeam according to its buckled shape , 2005, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[27]  R. L. Badzey,et al.  Coherent signal amplification in bistable nanomechanical oscillators by stochastic resonance , 2005, Nature.

[28]  C. Ru Thermoelastic dissipation of nanowire resonators with surface stress , 2009 .

[29]  D. Fang,et al.  Thermoelastic damping in micro-beam resonators , 2006 .

[30]  C. Quate,et al.  Atomic resolution with an atomic force microscope using piezoresistive detection , 1993 .

[31]  I. Mahboob,et al.  Bit storage and bit flip operations in an electromechanical oscillator. , 2008, Nature nanotechnology.

[32]  H. V. D. van der Zant,et al.  Bending-mode vibration of a suspended nanotube resonator. , 2006, Nano letters.

[33]  Kiyoshi Itao,et al.  Energy loss of a cantilever vibrator , 1968 .

[34]  Hiroshi Yamaguchi,et al.  Motion detection of a micromechanical resonator embedded in a d.c. SQUID , 2008 .

[35]  M. Roukes Nanoelectromechanical Systems , 2000, cond-mat/0008187.

[36]  J. Chaste,et al.  Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene. , 2011, Nature nanotechnology.

[37]  M. Roukes,et al.  Zeptogram-scale nanomechanical mass sensing. , 2005, Nano letters.

[38]  Harold S. Park,et al.  Multilayer friction and attachment effects on energy dissipation in graphene nanoresonators , 2009 .

[39]  I. Wilson-Rae,et al.  Intrinsic dissipation in nanomechanical resonators due to phonon tunneling , 2007, 0710.0200.

[40]  Sudeshna Sinha,et al.  A noise-assisted reprogrammable nanomechanical logic gate. , 2010, Nano letters.

[41]  M. Ramos,et al.  Low-temperature thermal conductivity of glasses within the soft-potential model , 1997 .

[42]  Shyamsunder Erramilli,et al.  Dynamical response of nanomechanical oscillators in immiscible viscous fluid for in vitro biomolecular recognition. , 2006, Physical review letters.

[43]  Baowen Li,et al.  Young's modulus of Graphene: a molecular dynamics study , 2009, 0906.5237.

[44]  D. Cahill,et al.  Elastic properties of several amorphous solids and disordered crystals below 100 K , 1996 .

[45]  C. Hierold,et al.  Nonconductive polymer microresonators actuated by the Kelvin polarization force , 2006 .

[46]  A. Kuwabara,et al.  Debye temperature and stiffness of carbon and boron nitride polymorphs from first principles calculations , 2006 .

[47]  Andrew Cleland,et al.  External control of dissipation in a nanometer-scale radiofrequency mechanical resonator , 1999 .

[48]  D. Photiadis,et al.  Thermoelastic loss in microscale oscillators , 2002 .

[49]  J. Borenstein,et al.  Experimental study of thermoelastic damping in MEMS gyros , 2003 .

[50]  B. Terris,et al.  High-density data storage based on the atomic force microscope , 1999, Proc. IEEE.

[51]  Z. J. Wang,et al.  Effect of fluids on the Q factor and resonance frequency of oscillating micrometer and nanometer scale beams. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  L. Piché,et al.  Anomalous Dielectric Dispersion in Glasses at Low Temperatures , 1975 .

[53]  A. Bachtold,et al.  Mechanical detection of carbon nanotube resonator vibrations. , 2007, Physical review letters.

[54]  M. Esashi,et al.  Energy dissipation in submicrometer thick single-crystal silicon cantilevers , 2002 .

[55]  M. Ramos,et al.  Strain dependence of the acoustic properties of amorphous metals below 1 K: Evidence for the interaction between tunneling states , 2002, cond-mat/0202139.

[56]  C. Ru,et al.  Effect of cross-sectional shape on thermoelastic dissipation of micro/nano elastic beams , 2012 .

[57]  James E. Butler,et al.  Elastic, mechanical, and thermal properties of nanocrystalline diamond films , 2003 .

[58]  X. Huang,et al.  Determination of the young's modulus of structurally defined carbon nanotubes. , 2008, Nano letters.

[59]  R. L. Badzey,et al.  A controllable nanomechanical memory element , 2005, cond-mat/0503258.

[60]  Measurement of energy eigenstates by a slow detector. , 2007, Physical review letters.

[61]  Ron Lifshitz,et al.  Nonlinear Dynamics of Nanomechanical and Micromechanical Resonators , 2009 .

[62]  C. Enss,et al.  Similarities and differences between the low-temperature acoustic properties of crystalline materials and glasses , 1997 .

[63]  Phillips Comment on "Two-level systems observed in the mechanical properties of single-crystal silicon at low temperatures" , 1988, Physical review letters.

[64]  Scott S. Verbridge,et al.  High quality factor resonance at room temperature with nanostrings under high tensile stress , 2006 .

[65]  Collins,et al.  Vacancy-related centers in diamond. , 1992, Physical review. B, Condensed matter.

[66]  Chunyu Li,et al.  Mass detection using carbon nanotube-based nanomechanical resonators , 2004 .

[67]  Brian H. Houston,et al.  Attachment loss of micromechanical and nanomechanical resonators in the limits of thick and thin support structures , 2007 .

[68]  Silvan Schmid,et al.  Damping mechanisms in high-Q micro and nanomechanical string resonators , 2011 .

[69]  M. Roukes,et al.  Thermoelastic damping in micro- and nanomechanical systems , 1999, cond-mat/9909271.

[70]  Brahim Lounis,et al.  Single molecule detection of nanomechanical motion. , 2012, Physical review letters.

[71]  Shin'ichi Warisawa,et al.  Improved resonance characteristics of GaAs beam resonators by epitaxially induced strain , 2008 .

[72]  F. Ayazi,et al.  An analytical model for support loss in micromachined beam resonators with in-plane flexural vibrations , 2003 .

[73]  Sebastien Hentz,et al.  Stability control of nonlinear micromechanical resonators under simultaneous primary and superharmonic resonances , 2011 .

[74]  Anja Boisen,et al.  Design, fabrication and testing of a novel MEMS resonator for mass sensing applications , 2007 .

[75]  V. Yakhot,et al.  Stokes' second flow problem in a high-frequency limit: application to nanomechanical resonators , 2006, Journal of Fluid Mechanics.

[76]  F. Guinea,et al.  Surface dissipation in nanoelectromechanical systems: Unified description with the standard tunneling model and effects of metallic electrodes , 2007, 0712.0753.

[77]  Bin Liu,et al.  Thermal Expansion of Single Wall Carbon Nanotubes , 2004 .

[78]  K. Jensen,et al.  Nanotube radio. , 2007, Nano letters.

[79]  N. Lewis,et al.  High-resolution soft X-ray photoelectron spectroscopic studies and scanning auger microscopy studies of the air oxidation of alkylated silicon(111) surfaces. , 2006, The journal of physical chemistry. B.

[80]  A. Leggett,et al.  Dynamics of the dissipative two-state system , 1987 .

[81]  Steven W. Shaw,et al.  Nonlinear Dynamics and Its Applications in Micro- and Nanoresonators , 2010 .

[82]  B. B. Nayak,et al.  Mechanical properties of graphite flakes and spherulites measured by nanoindentation , 2009 .

[83]  Masahiro Hirata,et al.  Unified formula describing the impedance dependence of a quartz oscillator on gas pressure , 1987 .

[84]  Robert W. Carpick,et al.  Mechanical stiffness and dissipation in ultrananocrystalline diamond microresonators , 2009 .

[85]  Erik Lucero,et al.  Microwave dielectric loss at single photon energies and millikelvin temperatures , 2008, 0802.2404.

[86]  Masayoshi Esashi,et al.  Investigating surface stress: Surface loss in ultrathin single-crystal silicon cantilevers , 2001 .

[87]  Phillips,et al.  Structural relaxation in vitreous silica. , 1988, Physical review letters.

[88]  G. N. Bycroft Forced vibrations of a rigid circular plate on a semi-infinite elastic space and on an elastic stratum , 1956, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[89]  M. Roukes,et al.  Parametric amplification and back-action noise squeezing by a qubit-coupled nanoresonator. , 2010, Nano letters.

[90]  J. Butler,et al.  Loss due to transverse thermoelastic currents in microscale resonators , 2004 .

[91]  J. Graebner,et al.  Relaxation of Tunneling Systems by Conduction Electrons in a Metallic Glass , 1978 .

[92]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[93]  Minhang Bao,et al.  Squeeze film air damping in MEMS , 2007 .

[94]  N. C. MacDonald,et al.  Dissipation measurements of vacuum-operated single-crystal silicon microresonators , 1995 .

[95]  Seiji Akita,et al.  Carbon nanotube oscillators toward zeptogram detection , 2005 .

[96]  C. Degen,et al.  Single-crystal diamond nanomechanical resonators with quality factors exceeding one million , 2012, Nature Communications.

[97]  Jaume Esteve,et al.  Parasitic effect on silicon MEMS resonator model parameters , 2007 .

[98]  W. Wernsdorfer,et al.  Dynamics and dissipation induced by single-electron tunneling in carbon nanotube nanoelectromechanical systems. , 2012, Physical review letters.

[99]  Jeffrey F. Rhoads,et al.  Observation of nonclassical scaling laws in the quality factors of cantilevered carbon nanotube resonators , 2011 .

[100]  E. Serra,et al.  A finite element formulation for thermoelastic damping analysis , 2009 .

[101]  Wei Tang,et al.  A high quality factor carbon nanotube mechanical resonator at 39 GHz. , 2012, Nano letters.

[102]  J. Kofler,et al.  Metallic coatings of microelectromechanical structures at low temperatures: Stress, elasticity, and nonlinear dissipation , 2010 .

[103]  S. Jennings,et al.  The mean free path in air , 1988 .

[104]  S. Purcell,et al.  Beyond the linear and Duffing regimes in nanomechanics: Circularly polarized mechanical resonances of nanocantilevers , 2010 .

[105]  Bianca E. N. Keeler,et al.  Mechanical dissipation in tetrahedral amorphous carbon , 2005 .

[106]  A. Brailsford,et al.  Anelastic Relaxation in Crystalline Solids , 1973 .

[107]  Guang Meng,et al.  Dynamics of carbon nanotubes mass detection involving phonon-tunnelling dissipation , 2012 .

[108]  T. Roszhart The effect of thermoelastic internal friction on the Q of micromachined silicon resonators , 1990, IEEE 4th Technical Digest on Solid-State Sensor and Actuator Workshop.

[109]  H Jiang,et al.  Intrinsic energy loss mechanisms in a cantilevered carbon nanotube beam oscillator. , 2004, Physical review letters.

[110]  John A. Judge,et al.  Attachment losses of high Q oscillators , 2004 .

[111]  Tae-Yon Lee,et al.  Separate domain formation in Ge2Sb2Te5–SiOx mixed layer , 2006 .

[112]  M. Imboden,et al.  Synchronized Oscillation in Coupled Nanomechanical Oscillators , 2007, Science.

[113]  C.T.-C. Nguyen,et al.  Series-resonant VHF micromechanical resonator reference oscillators , 2004, IEEE Journal of Solid-State Circuits.

[114]  Doubly Clamped Nanobeam as a Piezoresistive Mass Sensor , 2007, 2007 IEEE Sensors.

[115]  X. Huang Ultrahigh and microwave frequency nanomechanical systems , 2004 .

[116]  Vera Sazonova,et al.  A tunable carbon nanotube resonator , 2006 .

[117]  K. Ekinci,et al.  Motion transduction in nanoelectromechanical systems (NEMS) arrays using near-field optomechanical coupling. , 2012, Nano letters.

[118]  M. Balkanski,et al.  Elastic properties of crystals of single-walled carbon nanotubes , 2000 .

[119]  Gil,et al.  Low-temperature specific heat and thermal conductivity of glasses. , 1993, Physical review letters.

[120]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[121]  R. Olsson,et al.  Realizing the frequency quality factor product limit in silicon via compact phononic crystal resonators , 2010 .

[122]  A. Ionescu,et al.  Nanomechanical silicon resonators with intrinsic tunable gain and sub-nW power consumption. , 2012, ACS nano.

[123]  Controlling the nonlinearity of silicon nanowire resonators using active feedback , 2009 .

[124]  Sheng-Shian Li,et al.  UHF micromechanical extensional wine-glass mode ring resonators , 2003, IEEE International Electron Devices Meeting 2003.

[125]  D. Kwong,et al.  Numerical and experimental study on silicon microresonators based on phononic crystal slabs with reduced central-hole radii , 2013 .

[126]  H. Craighead,et al.  Single cell detection with micromechanical oscillators , 2001 .

[127]  W. G. Bowman,et al.  Young's modulus , 2014 .

[128]  Methyl monolayers suppress mechanical energy dissipation in micromechanical silicon resonators , 2004 .

[129]  Stephen G. Burrow,et al.  Energy harvesting from vibrations with a nonlinear oscillator , 2009 .

[130]  D. Tománek,et al.  Thermal contraction of carbon fullerenes and nanotubes. , 2004, Physical review letters.

[131]  E. Pop,et al.  Thermal conductance of an individual single-wall carbon nanotube above room temperature. , 2005, Nano letters.

[132]  M. Blencowe Nanoelectromechanical systems , 2005, cond-mat/0502566.

[133]  M. Roukes,et al.  Sensitive detection of nanomechanical motion using piezoresistive signal downmixing , 2005 .

[134]  W. Newell Miniaturization of tuning forks. , 1968, Science.

[135]  H. D. Wu,et al.  Low temperature internal friction of diamond-like carbon films , 2004 .

[136]  W. Arnold,et al.  Elastic effects of structural relaxation in glasses at low temperatures , 1976 .

[137]  M. Cross,et al.  Elastic Wave Transmission at an Abrupt Junction in a Thin Plate, with Application to Heat Transport and Vibrations in Mesoscopic Systems , 2000, cond-mat/0011501.

[138]  A. T. Moorhouse,et al.  A closed form solution for the mobility of an edge-excited, semi-infinite plate , 2004 .

[139]  M. Mehregany,et al.  Dissipation in Single-Crystal 3C-SiC Ultra-High Frequency Nanomechanical Resonators , 2006 .

[140]  K. Schwab,et al.  Spring constant and damping constant tuning of nanomechanical resonators using a single-electron transistor , 2002 .

[141]  H. V. D. Zant,et al.  Mechanical systems in the quantum regime , 2011, 1106.2060.

[142]  B. Hök,et al.  Vibration analysis of micromechanical elements , 1985 .

[143]  Eyal Buks,et al.  Nonlinear dynamics in nanomechanical oscillators , 2005, 2005 International Conference on MEMS,NANO and Smart Systems.

[144]  Thomas Faust,et al.  Damping of nanomechanical resonators. , 2010, Physical review letters.

[145]  L. Ioffe,et al.  Damping in high-frequency metallic nanomechanical resonators , 2010, 1001.4612.

[146]  H. Craighead,et al.  Macroscopic tuning of nanomechanics: substrate bending for reversible control of frequency and quality factor of nanostring resonators. , 2007, Nano letters.

[147]  Mark R. Freeman,et al.  Time-domain control of ultrahigh-frequency nanomechanical systems. , 2008, Nature nanotechnology.

[148]  John P. Sullivan,et al.  Young's modulus, Poisson's ratio and failure properties of tetrahedral amorphous diamond-like carbon for MEMS devices , 2005 .

[149]  Matthias Imboden,et al.  Observation of nonlinear dissipation in piezoresistive diamond nanomechanical resonators by heterodyne down-mixing. , 2013, Nano letters.

[150]  Inspec Properties of gallium arsenide , 1986 .

[151]  Alex K Zettl,et al.  Sustained mechanical self-oscillations in carbon nanotubes. , 2010, Nano letters.

[152]  Michael L. Roukes,et al.  Balanced electronic detection of displacement in nanoelectromechanical systems , 2002 .

[153]  D. Rugar,et al.  Mechanical parametric amplification and thermomechanical noise squeezing. , 1991, Physical review letters.

[154]  R. Pohl,et al.  Annealing of Quench-Condensed Argon Films , 2001 .

[155]  M. D. LaHaye,et al.  Cooling a nanomechanical resonator with quantum back-action , 2006, Nature.

[156]  Stefan Kettemann,et al.  Nanomechanical detection of itinerant electron spin flip. , 2008, Nature nanotechnology.

[157]  M. Roukes,et al.  Measurement of small forces in micron-sized resonators , 2000 .

[158]  R Almog,et al.  Noise squeezing in a nanomechanical Duffing resonator. , 2007, Physical review letters.

[159]  Santos,et al.  Dissipation in finite systems: Semiconductor NEMS, graphene NEMS, and metallic nanoparticles , 2007, 0712.2065.

[160]  J. Butler,et al.  Dissipation in single crystal diamond micromechanical annular plate resonators , 2011 .

[161]  O. Williams,et al.  Nonlinear dissipation in diamond nanoelectromechanical resonators , 2013 .

[162]  M. Roukes,et al.  Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. , 2007, Nature nanotechnology.

[163]  P. M. Echternach,et al.  Nanomechanical measurements of a superconducting qubit , 2009, Nature.

[164]  M. R. Freeman,et al.  Multifunctional Nanomechanical Systems via Tunably Coupled Piezoelectric Actuation , 2007, Science.

[165]  L. Sekaric,et al.  Nanofabrication and electrostatic operation of single-crystal silicon paddle oscillators , 1999 .

[166]  W. Phillips,et al.  An asymmetric double-well potential model for structural relaxation processes in amorphous materials. , 1981 .

[167]  Eva M. Weig,et al.  Universal transduction scheme for nanomechanical systems based on dielectric forces , 2009, Nature.

[168]  P. Ovartchaiyapong,et al.  High quality factor single-crystal diamond mechanical resonators , 2012 .

[169]  C. Zener INTERNAL FRICTION IN SOLIDS. I. THEORY OF INTERNAL FRICTION IN REEDS , 1937 .

[170]  M. Roukes,et al.  Efficient electrothermal actuation of multiple modes of high-frequency nanoelectromechanical resonators , 2007 .

[171]  L. Gammaitoni,et al.  Nonlinear energy harvesting. , 2008, Physical review letters.

[172]  O. Anderson,et al.  Ultrasonic Absorption in Fused Silica at Low Temperatures and High Frequencies , 1955 .

[173]  J. Hone,et al.  Thermal properties of carbon nanotubes and nanotube-based materials , 2002 .

[174]  Pohl,et al.  Low temperature acoustic properties of amorphous silica and the tunneling model , 1999, Physical Review Letters.

[175]  D Garcia-Sanchez,et al.  Imaging mechanical vibrations in suspended graphene sheets. , 2008, Nano letters.

[176]  Signal amplification by 1/f noise in silicon-based nanomechanical resonators. , 2009, Nano letters.

[177]  C. Nguyen,et al.  High-Q HF microelectromechanical filters , 2000, IEEE Journal of Solid-State Circuits.

[178]  Y. B. Yi Geometric effects on thermoelastic damping in MEMS resonators , 2007 .

[179]  Scott S. Verbridge,et al.  A megahertz nanomechanical resonator with room temperature quality factor over a million , 2008 .

[180]  Xiao Liu,et al.  LOW-TEMPERATURE INTERNAL FRICTION IN METAL FILMS AND IN PLASTICALLY DEFORMED BULK ALUMINUM , 1999 .

[181]  Michael L. Roukes,et al.  Very High Frequency Silicon Nanowire Electromechanical Resonators , 2007 .

[182]  Yu Wang,et al.  Understanding the effects of surface chemistry on Q: mechanical energy dissipation in alkyl-terminated (C1-C18) micromechanical silicon resonators. , 2007, The journal of physical chemistry. B.

[183]  Andrew Cleland,et al.  Thermomechanical noise limits on parametric sensing with nanomechanical resonators , 2005 .

[184]  G. Steele,et al.  Carbon nanotubes as ultrahigh quality factor mechanical resonators. , 2009, Nano letters.

[185]  Carlo D. Montemagno,et al.  Constructing nanomechanical devices powered by biomolecular motors , 1999 .

[186]  Masayoshi Esashi,et al.  Surface effects and high quality factors in ultrathin single-crystal silicon cantilevers , 2000 .

[187]  Brian H. Houston,et al.  Thermoelastic damping in micromechanical resonators , 2009 .

[188]  Robert A. Barton,et al.  Free-standing epitaxial graphene. , 2009, Nano letters.

[189]  A. Bachtold,et al.  Ultrasensitive mass sensing with a nanotube electromechanical resonator. , 2008, Nano letters.

[190]  Stephen P. Timoshenko,et al.  Vibration problems in engineering , 1928 .

[191]  Seoánez Erkell,et al.  Dissipation in finite systems: Semiconductor NEMS, graphene NEMS, and metallic nanoparticles , 2007 .

[192]  O. Gottlieb,et al.  Nonlinear damping in a micromechanical oscillator , 2009, 0911.0833.

[193]  B. Camarota,et al.  Approaching the Quantum Limit of a Nanomechanical Resonator , 2004, Science.

[194]  M. Imboden,et al.  Evidence of universality in the dynamical response of micromechanical diamond resonators at millikelvin temperatures , 2008, 0803.1669.

[195]  L. Sekaric,et al.  Operation of nanomechanical resonant structures in air , 2002 .

[196]  Michael R. Vanner,et al.  Phonon-tunnelling dissipation in mechanical resonators , 2010, Nature communications.

[197]  M. Imboden,et al.  Electrostatically actuated silicon-based nanomechanical switch at room temperature , 2008, 0903.2491.

[198]  T. Kenny,et al.  Quality factors in micron- and submicron-thick cantilevers , 2000, Journal of Microelectromechanical Systems.

[199]  Leon M Bellan,et al.  Optically driven resonance of nanoscale flexural oscillators in liquid. , 2006, Nano letters.

[200]  L. Sekaric,et al.  Dissipation in nanocrystalline-diamond nanomechanical resonators , 2004 .

[201]  Pritiraj Mohanty,et al.  Noise color and asymmetry in stochastic resonance with silicon nanomechanical resonators , 2009, 0903.2522.

[202]  Ning Liu,et al.  Pressurized fluid damping of nanoelectromechanical systems. , 2009, Physical review letters.

[203]  M. Roukes,et al.  Toward single-molecule nanomechanical mass spectrometry , 2005, Nature nanotechnology.

[204]  M. Bocko,et al.  On the measurement of a weak classical force coupled to a harmonic oscillator: experimental progress , 1996 .

[205]  J. Carcione,et al.  Generalized Mechanical Model Analogies of Linear Viscoelastic Behaviour , 1992 .

[206]  Ujjal Kumar Sur,et al.  Carbon Nanotube Radio , 2011 .

[207]  Bishop,et al.  Two-level systems observed in the mechanical properties of single-crystal silicon at low temperatures. , 1987, Physical review letters.

[208]  J. Jäckle,et al.  Anomalous Sound Velocity in Vitreous Silica at Very Low Temperatures , 1974 .

[209]  R. Rebel,et al.  High Performance MEMS Oscillators for Communications Applications , 2010 .

[210]  B. Chui,et al.  Single spin detection by magnetic resonance force microscopy , 2004, Nature.

[211]  R. C. Johnson,et al.  Hysteretic Creep of Elastic Manifolds. , 1996, Physical review letters.

[212]  Thomas Faust,et al.  Frequency and Q factor control of nanomechanical resonators , 2012, 1207.2403.

[213]  Chengkuo Lee,et al.  Silicon two-dimensional phononic crystal resonators using alternate defects , 2011 .

[214]  White Be,et al.  Internal friction of subnanometer a-SiO2 films. , 1995 .

[215]  Mohamed A. Osman,et al.  Temperature dependence of the thermal conductivity of single-wall carbon nanotubes , 2001 .

[216]  Lidija Sekaric,et al.  Parametric amplification in a torsional microresonator , 2000 .

[217]  C. Mellor,et al.  Dissipation in a Gold Nanomechanical Resonator at Low Temperatures , 2010 .

[218]  Rob Ilic,et al.  Size and frequency dependent gas damping of nanomechanical resonators , 2008 .

[219]  Jae Hyuck Jang,et al.  High-frequency micromechanical resonators from aluminium-carbon nanotube nanolaminates. , 2008, Nature materials.

[220]  Houwen Tang,et al.  Predictive modeling of thermoelastic energy dissipation in tunable MEMS mirrors , 2008 .

[221]  Michael L. Roukes,et al.  Intrinsic dissipation in high-frequency micromechanical resonators , 2002 .

[222]  Zenan Qi,et al.  Intrinsic energy dissipation in CVD-grown graphene nanoresonators. , 2012, Nanoscale.

[223]  M. Roukes,et al.  Parametric nanomechanical amplification at very high frequency. , 2009, Nano letters.

[224]  R. L. Badzey,et al.  Quantum friction in nanomechanical oscillators at millikelvin temperatures , 2005, cond-mat/0603691.

[225]  Robert A. Barton,et al.  Large-scale arrays of single-layer graphene resonators. , 2010, Nano letters.

[226]  P. McEuen,et al.  A tunable carbon nanotube electromechanical oscillator , 2004, Nature.

[227]  A. Croy,et al.  Nonlinear Damping in Graphene Resonators , 2012, 1204.0911.

[228]  Peter Vettiger,et al.  Temperature dependence of the force sensitivity of silicon cantilevers , 2004 .

[229]  Yuehang Xu,et al.  Radio frequency electrical transduction of graphene mechanical resonators , 2010 .

[230]  Gabriel M. Rebeiz RF MEMS: Theory, Design and Technology , 2003 .

[231]  A. Cleland,et al.  Noise-enabled precision measurements of a duffing nanomechanical resonator. , 2004, Physical review letters.

[232]  J. Teufel,et al.  Nanomechanical motion measured with an imprecision below that at the standard quantum limit. , 2009, Nature nanotechnology.

[233]  J. Vig,et al.  Noise in microelectromechanical system resonators , 1999, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[234]  D. Fang,et al.  ADVANCES IN THERMOELASTIC DAMPING IN MICRO- AND NANO-MECHANICAL RESONATORS: A REVIEW , 2007 .

[235]  Nicola Marzari,et al.  First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives , 2004, cond-mat/0412643.

[236]  G. K. Ho,et al.  High-Q single crystal silicon HARPSS capacitive beam resonators with self-aligned sub-100-nm transduction gaps , 2003 .

[237]  M. Roukes,et al.  VHF, UHF and microwave frequency nanomechanical resonators , 2005 .

[238]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[239]  P. Esquinazi,et al.  Tunneling Systems in Amorphous and Crystalline Solids , 1998 .

[240]  Liping Liu THEORY OF ELASTICITY , 2012 .

[241]  Jin-Chen Hsu,et al.  Phononic crystal strips for engineering micromechanical resonators , 2012, Other Conferences.

[242]  M. Roukes,et al.  Single-protein nanomechanical mass spectrometry in real time , 2012, Nature nanotechnology.

[243]  Axel Scherer,et al.  Nanowire-Based Very-High-Frequency Electromechanical Resonator , 2003 .

[244]  M. Roukes,et al.  Noise processes in nanomechanical resonators , 2002 .

[245]  Jacqueline Krim,et al.  Foundations of Nanomechanics: From Solid-State Theory to Device Applications , 2004 .

[246]  T. D. Yuzvinsky,et al.  Ultrahigh frequency nanotube resonators. , 2006, Physical review letters.

[247]  Miko Elwenspoek,et al.  Micro resonant force gauges , 1992 .

[248]  L. Buchaillot,et al.  Amplified piezoelectric transduction of nanoscale motion in gallium nitride electromechanical resonators , 2009 .

[249]  W A Phillips Two-level states in glasses , 1987 .

[250]  Xiao Liu,et al.  Amorphous Solid without Low Energy Excitations , 1997 .

[251]  Vibhor Singh,et al.  Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene nanoelectromechanical systems resonators , 2010, Nanotechnology.

[252]  P. Mohanty,et al.  Quantum friction of micromechanical resonators at low temperatures. , 2003, Physical review letters.

[253]  Free-free beam silicon carbide nanomechanical resonators , 2003, TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664).

[254]  Siavash Pourkamali,et al.  Active self-Q-enhancement in high frequency thermally actuated M/NEMS resonators , 2011, 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems.

[255]  Woo-Tae Park,et al.  Impact of geometry on thermoelastic dissipation in micromechanical resonant beams , 2006, Journal of Microelectromechanical Systems.

[256]  C. Zener INTERNAL FRICTION IN SOLIDS II. GENERAL THEORY OF THERMOELASTIC INTERNAL FRICTION , 1938 .

[257]  L. Sekaric,et al.  Temperature-dependent internal friction in silicon nanoelectromechanical systems , 2000 .

[258]  F. Reif,et al.  Fundamentals of Statistical and Thermal Physics , 1965 .

[259]  Thomas W. Kenny,et al.  Adventures in attonewton force detection , 2001 .

[260]  W. Bowen,et al.  Cavity optoelectromechanical system combining strong electrical actuation with ultrasensitive transduction , 2010, 1005.4974.

[261]  L. Sekaric,et al.  Measurement of mechanical resonance and losses in nanometer scale silicon wires , 1999 .

[262]  Joshua E.-Y. Lee,et al.  Direct parameter extraction in feedthrough-embedded capacitive MEMS resonators , 2011 .

[263]  R. Pohl,et al.  Elastic Properties of Thin Films , 1994 .

[264]  Michael L. Roukes,et al.  Energy dissipation in suspended micromechanical resonators at low temperatures , 2000 .

[265]  P. Kim,et al.  Performance of monolayer graphene nanomechanical resonators with electrical readout. , 2009, Nature nanotechnology.

[266]  Mehran Mehregany,et al.  Monocrystalline silicon carbide nanoelectromechanical systems , 2001 .

[267]  Oliver Ambacher,et al.  Two-dimensional electron gas based actuation of piezoelectric AlGaN/GaN microelectromechanical resonators , 2008 .

[268]  P. Anderson,et al.  Anomalous low-temperature thermal properties of glasses and spin glasses , 1972 .