Global sensitivity analysis of a coupled multiphysics model to predict surface evolution in fusion plasma–surface interactions

We construct a global sensitivity analysis framework for a coupled multiphysics model used to predict the changes in material properties and surface morphology of helium plasma-facing components in future fusion reactors. The model combines the particle dynamics simulator F-TRIDYN, that predicts the helium implantation profile, with the cluster dynamics simulator Xolotl, that predicts the growth and evolution of subsurface helium gas bubbles. In order to keep the sensitivity analysis tractable, we first construct a sparse, high-dimensional polynomial chaos expansion surrogate model for each output quantity of interest, which allows the efficient extraction of sensitivity information. The sensitivity analysis is performed for two problem settings: one for ITER-like conditions, and one that resembles conditions inside the PISCES-A linear plasma device. We present a systematic comparison of important parameters, for both F-TRIDYN and Xolotl in isolation as well as for the coupled model, and discuss the physical interpretation of these results.

[1]  D. Bernholdt,et al.  Integrated model predictions on the impact of substrate damage on gas dynamics during ITER burning-plasma operations , 2021, Nuclear Fusion.

[2]  D. Curreli,et al.  RustBCA: A High-Performance Binary-Collision-Approximation Code for Ion-Material Interactions , 2021, J. Open Source Softw..

[3]  Brian Wirth,et al.  GITR: An accelerated global scale particle tracking code for wall material erosion and redistribution in fusion relevant plasma-material interactions , 2021, Comput. Phys. Commun..

[4]  H. Najm,et al.  Quantification of the effect of uncertainty on impurity migration in PISCES-A simulated with GITR , 2018, Nuclear Fusion.

[5]  W. Elwasif,et al.  Multi-physics modeling of the long-term evolution of helium plasma exposed surfaces , 2020, Physica Scripta.

[6]  G. Tynan,et al.  Plasma-Material-Interaction Research Using PISCES Linear Plasma Devices , 2019, Fusion Science and Technology.

[7]  Barry F. Smith,et al.  PETSc Users Manual , 2019 .

[8]  D. Bernholdt,et al.  Continuum-scale modeling of helium bubble bursting under plasma-exposed tungsten surfaces , 2018 .

[9]  Davide Curreli,et al.  F-TRIDYN simulations of tungsten self-sputtering and applications to coupling plasma and material codes , 2018, Computational Materials Science.

[10]  D. Maroudas,et al.  Large-scale atomistic simulations of low-energy helium implantation into tungsten single crystals , 2018 .

[11]  Bastian Bohn,et al.  On the Convergence Rate of Sparse Grid Least Squares Regression , 2018 .

[12]  K. Hammond Helium, hydrogen, and fuzz in plasma-facing materials , 2017 .

[13]  G. Matthews,et al.  Physics conclusions in support of ITER W divertor monoblock shaping , 2017 .

[14]  A. Voter,et al.  The mobility of small vacancy/helium complexes in tungsten and its impact on retention in fusion-relevant conditions , 2017, Scientific Reports.

[15]  Davide Curreli,et al.  F-TRIDYN: A Binary Collision Approximation code for simulating ion interactions with rough surfaces , 2017, 1703.00315.

[16]  D. Maroudas,et al.  Modeling Helium Segregation to the Surfaces of Plasma-Exposed Tungsten as a Function of Temperature and Surface Orientation , 2017 .

[17]  D. Bernholdt,et al.  Benchmarks and Tests of a Multidimensional Cluster Dynamics Model of Helium Implantation in Tungsten , 2017 .

[18]  B. Wirth,et al.  Grouping techniques for large-scale cluster dynamics simulations of reaction diffusion processes , 2017 .

[19]  D. Maroudas,et al.  Helium segregation on surfaces of plasma-exposed tungsten , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[20]  G. Wright,et al.  Dynamic measurement of the helium concentration of evolving tungsten nanostructures using Elastic Recoil Detection during plasma exposure , 2015 .

[21]  Davide Curreli,et al.  Ion energy-angle distribution functions at the plasma-material interface in oblique magnetic fields , 2015 .

[22]  Danny Perez,et al.  Competing kinetics and he bubble morphology in W. , 2015, Physical review letters.

[23]  Khachik Sargsyan,et al.  Surrogate Models for Uncertainty Propagation and Sensitivity Analysis , 2015 .

[24]  Cosmin Safta,et al.  Uncertainty Quantification Toolkit (UQTk) , 2015 .

[25]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[26]  S. Brezinsek,et al.  Plasma-surface interaction in the Be/W environment: Conclusions drawn from the JET-ILW for ITER , 2015 .

[27]  T. Faney,et al.  Spatially dependent cluster dynamics modeling of microstructure evolution in low energy helium irradiated tungsten , 2014 .

[28]  A. Takayama,et al.  Molecular dynamics simulation of a helium bubble bursting on tungsten surfaces , 2014 .

[29]  Ralph C. Smith,et al.  Uncertainty Quantification: Theory, Implementation, and Applications , 2013 .

[30]  Peter E. Thornton,et al.  DIMENSIONALITY REDUCTION FOR COMPLEX MODELS VIA BAYESIAN COMPRESSIVE SENSING , 2014 .

[31]  Brian D. Wirth,et al.  Helium bubble bursting in tungsten , 2013 .

[32]  Cynthia Keppley Mahmood,et al.  Helium , 2013 .

[33]  Brian D. Wirth,et al.  Tungsten surface evolution by helium bubble nucleation, growth and rupture , 2013 .

[34]  Youssef M. Marzouk,et al.  Adaptive Smolyak Pseudospectral Approximations , 2012, SIAM J. Sci. Comput..

[35]  B.,et al.  Comparison of tungsten nano-tendrils grown in Alcator C-Mod and linear plasma devices , 2013 .

[36]  O. Ernst,et al.  ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS , 2011 .

[37]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[38]  Bruno Sudret,et al.  Adaptive sparse polynomial chaos expansion based on least angle regression , 2011, J. Comput. Phys..

[39]  R. Doerner,et al.  Formation of helium induced nanostructure ‘fuzz’ on various tungsten grades , 2010 .

[40]  O. L. Maître,et al.  Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .

[41]  Samantha S. Foley,et al.  The Design and Implementation of the SWIM Integrated Plasma Simulator , 2010, 2010 18th Euromicro Conference on Parallel, Distributed and Network-based Processing.

[42]  Aggelos K. Katsaggelos,et al.  Bayesian Compressive Sensing Using Laplace Priors , 2010, IEEE Transactions on Image Processing.

[43]  Olivier P. Le Maître,et al.  Polynomial chaos expansion for sensitivity analysis , 2009, Reliab. Eng. Syst. Saf..

[44]  Habib N. Najm,et al.  Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics , 2009 .

[45]  D. Meade,et al.  50 years of fusion research , 2009 .

[46]  Bruno Sudret,et al.  Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..

[47]  Lawrence Carin,et al.  Bayesian Compressive Sensing , 2008, IEEE Transactions on Signal Processing.

[48]  Saltelli Andrea,et al.  Global Sensitivity Analysis: The Primer , 2008 .

[49]  Wolfgang Eckstein,et al.  Sputtering by Particle Bombardment, Experiments and Computer Calculations from Threshold to MeV Energies , 2007 .

[50]  B. Braams,et al.  Plasma Edge Physics with B2‐Eirene , 2006 .

[51]  E. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[52]  Habib N. Najm,et al.  Numerical Challenges in the Use of Polynomial Chaos Representations for Stochastic Processes , 2005, SIAM J. Sci. Comput..

[53]  Thomas Gerstner,et al.  Dimension–Adaptive Tensor–Product Quadrature , 2003, Computing.

[54]  H. Najm,et al.  Uncertainty quantification in reacting-flow simulations through non-intrusive spectral projection , 2003 .

[55]  Michael E. Tipping,et al.  Fast Marginal Likelihood Maximisation for Sparse Bayesian Models , 2003 .

[56]  A. Saltelli,et al.  Making best use of model evaluations to compute sensitivity indices , 2002 .

[57]  R. Ghanem,et al.  A stochastic projection method for fluid flow. I: basic formulation , 2001 .

[58]  Robert W. Conn,et al.  Measurements of erosion mechanisms from solid and liquid materials in PISCES-B , 2001 .

[59]  I. Sobola,et al.  Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[60]  M. Jansen Analysis of variance designs for model output , 1999 .

[61]  Roger Ghanem,et al.  Ingredients for a general purpose stochastic finite elements implementation , 1999 .

[62]  Roger Smith Atomic and Ion Collisions in Solids and at Surfaces: Molecular dynamics , 1997 .

[63]  Pol D. Spanos,et al.  Spectral Stochastic Finite-Element Formulation for Reliability Analysis , 1991 .

[64]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[65]  W. Eckstein,et al.  Tridyn-binary collision simulation of atomic collisions and dynamic composition changes in solids , 1988 .

[66]  J. Biersack,et al.  A Monte Carlo computer program for the transport of energetic ions in amorphous targets , 1980 .