Computing Minimum Length Paths of a Given Homotopy Class (Extended Abstract)

In this abstract, we use the universal covering space of a surface to generalize previous results on computing paths in a simple polygon. We look at optimizing paths among obstacles in the plane under the Euclidean and link metrics and polygonal convex distance functions. The universal cover is a unifying framework that reveals connections between minimum paths under these three distance functions, as well as yielding simpler linear-time algorithms for shortest path trees and minimum link paths in simple polygons.

[1]  D. T. Lee,et al.  Rectilinear shortest paths in the presence of rectangular barriers , 1989, Discret. Comput. Geom..

[2]  Leonidas J. Guibas,et al.  Optimal Shortest Path Queries in a Simple Polygon , 1989, J. Comput. Syst. Sci..

[3]  D. T. Lee,et al.  Rectilinear shortest paths with rectangular barriers , 1985, SCG '85.

[4]  C. A. Rogers,et al.  An Introduction to the Geometry of Numbers , 1959 .

[5]  Mark de Berg Translating Polygons with Applications to Hidden Surface Removal , 1990, SWAT.

[6]  Bernard Chazelle,et al.  Triangulating a simple polygon in linear time , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[7]  D. T. Lee,et al.  Euclidean shortest paths in the presence of rectilinear barriers , 1984, Networks.

[8]  Victor O. K. Li,et al.  Finding minimum rectilinear distance paths in the presence of barriers , 1981, Networks.

[9]  Ronald L. Graham,et al.  An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set , 1972, Inf. Process. Lett..

[10]  G. Toussaint Computing geodesic properties inside a simple polygon , 1989 .

[11]  Bernard Chazelle,et al.  A theorem on polygon cutting with applications , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[12]  S. Suri A linear time algorithm with minimum link paths inside a simple polygon , 1986 .

[13]  G. Toussaint,et al.  On separating two simple polygons by a single translation , 1989, Discret. Comput. Geom..

[14]  Godfried T. Toussaint,et al.  Movable Separability of Sets , 1985 .

[15]  James R. Munkres,et al.  Topology; a first course , 1974 .

[16]  Alok Aggarwal,et al.  Finding Minimal Convex Nested Polygons , 1989, Inf. Comput..

[17]  David M. Mount,et al.  An Output Sensitive Algorithm for Computing Visibility Graphs , 1987, FOCS.

[18]  Kurt Mehlhorn,et al.  On Continuous Homotopic One Layer Routing , 1988, Workshop on Computational Geometry.

[19]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[20]  S. N. Maheshwari,et al.  Efficient algorithms for Euclidean shortest path and visibility problems with polygonal obstacles , 1988, SCG '88.

[21]  Mark de Berg,et al.  On Rectilinear Link Distance , 1991, Comput. Geom..

[22]  Kurt Mehlhorn,et al.  On continuous Homotopic one layer routing , 1988, SCG '88.

[23]  Ralf Hartmut Güting,et al.  New algorithms for special cases of the hidden line elimination problem , 1987, Comput. Vis. Graph. Image Process..

[24]  Jorg-Rudiger Wolfgang Sack,et al.  Rectilinear computational geometry , 1984 .

[25]  Hazel Everett,et al.  The Aquarium Keeper's Problem , 1991, SODA '91.

[26]  Kenneth L. Clarkson,et al.  Rectilinear shortest paths through polygonal obstacles in O(n(logn)2) time , 1987, SCG '87.

[27]  Tomio Hirata,et al.  The Intersection Searching Problem for c-Oriented Polygons , 1991, Inf. Process. Lett..

[28]  Derick Wood,et al.  Optimal Computation of Finitely Oriented Convex Hulls , 1987, Inf. Comput..

[29]  Subir Kumar Ghosh Computing the Visibility Polygon from a Convex Set and Related Problems , 1991, J. Algorithms.

[30]  Charles E. Leiserson,et al.  Algorithms for routing and testing routability of planar VLSI layouts , 1985, STOC '85.