AGN Dusty Tori. I. Handling of Clumpy Media

Accordingtounifiedschemesof activegalactic nuclei(AGNs), thecentralengine issurroundedbydusty,optically thickcloudsinatoroidalstructure.Wehaverecentlydevelopedaformalismthatforthefirsttimetakesproperaccount of the clumpy nature of the AGN torus. We now provide a detailed report of our findings in a two-paper series. Here wepresentourgeneralformalismforradiativetransferinclumpymediaandconstructitsbuildingblocksfortheAGN problem—the source functions of individual dusty clouds heated by the AGN radiation field. We show that a fundamental difference from smooth density distributions is that in a clumpy medium, a large range of dust temperatures coexist at the same distance from the radiation central source. This distinct property explains the low dust temperatures found close to the nucleus of NGC 1068 in 10� m interferometric observations. Wefind that, irrespective of the overallgeometry,aclumpydustdistributionshowsonlymoderate variationinitsspectralenergydistribution, andthe 10� mabsorptionfeatureisneverdeep.Furthermore,theX-rayattenuatingcolumndensityiswidelyscatteredaround the column density that characterizes the IR emission. All of these properties are characteristic of AGN observations. The assembly of clouds into AGN tori and comparison with observations are presented in the companion paper. Subject headingg dust, extinction — galaxies: active — galaxies: Seyfert — infrared: general — quasars: general — radiative transfer

[1]  S. Wolf Efficient Radiative Transfer in Dust Grain Mixtures , 2002, astro-ph/0209281.

[2]  Robert Antonucci,et al.  Unified models for active galactic nuclei and quasars , 1993 .

[3]  E. Perlman,et al.  Spatially Resolved Mid-Infrared Spectroscopy of NGC 1068: The Nature and Distribution of the Nuclear Material , 2005, astro-ph/0512202.

[4]  M. Schoeller,et al.  The central dusty torus in the active nucleus of NGC 1068 , 2004, Nature.

[5]  Shai Kaspi,et al.  Modeling Variable Emission Lines in Active Galactic Nuclei: Method and Application to NGC 5548 , 1999, astro-ph/9905241.

[6]  Ž. Ivezić,et al.  AGN Dusty Tori. II. Observational Implications of Clumpiness , 2008 .

[7]  Observatoire de la Cote d'Azur,et al.  Resolving the complex structure of the dust torus in the active nucleus of the Circinus galaxy , 2007, 0709.0209.

[8]  M. Mayor,et al.  Active Galactic Nuclei: Saas-Fee Advanced Course 20. Lecture Notes 1990. Swiss Society for Astrophysics and Astronomy , 1991 .

[9]  L. Armus,et al.  Silicates in Ultraluminous Infrared Galaxies , 2008, 0801.4776.

[10]  Connecting the cosmic infrared background to the X-ray background , 2004, astro-ph/0403381.

[11]  G. Perrin,et al.  A new analysis of the nucleus of NGC 1068 with MIDI observations , 2005, astro-ph/0512560.

[12]  M. Elitzur The obscuring torus in AGN , 2006 .

[13]  H. Netzer AGN Emission Lines , 1990 .

[14]  Ucsb,et al.  The dust‐eliminated shape of quasar spectra in the near‐infrared: a hidden part of the big blue bump , 2005, astro-ph/0509341.

[15]  P. Padovani,et al.  UNIFIED SCHEMES FOR RADIO-LOUD ACTIVE GALACTIC NUCLEI , 1995, astro-ph/9506063.

[16]  Z. Ivezic,et al.  Dust Emission from Active Galactic Nuclei , 2002 .

[17]  B. Draine Scattering by Interstellar Dust Grains. I. Optical and Ultraviolet , 2003, astro-ph/0304060.

[18]  et al,et al.  Optical and Radio Properties of Extragalactic Sources Observed by the FIRST Survey and the Sloan Digital Sky Survey , 2002, astro-ph/0202408.

[19]  to appear in the Astrophysical Journal Letters Preprint typeset using L ATEX style emulateapj v. 11/26/04 MULTIPLE REGRESSION ANALYSIS OF THE VARIABLE COMPONENT IN THE NEAR-INFRARED REGION FOR TYPE 1 AGN MCG+08-11-011 , 2006 .

[20]  K. Nordsieck,et al.  The Size distribution of interstellar grains , 1977 .

[22]  Julian H. Krolik,et al.  Infrared spectra of obscuring dust tori around active galactic nuclei. I - Calculational method and basic trends , 1992 .

[23]  E. Oliva,et al.  Dust covering factor, silicate emission, and star formation in luminous QSOs , 2007, 0704.1559.

[24]  M. Rowan-Robinson,et al.  Multigrain dust cloud models of compact HII regions. , 1994 .

[25]  S. Hüttemeister,et al.  The Neutral ISM in Starburst Galaxies , 2004 .

[26]  J. Houck,et al.  Deep Mid-Infrared Silicate Absorption as a Diagnostic of Obscuring Geometry toward Galactic Nuclei , 2006, astro-ph/0611458.

[27]  Heidelberg,et al.  Towards a physical model of dust tori in Active Galactic Nuclei Radiative transfer calculations for a hydrostatic torus model , 2005, astro-ph/0504105.

[28]  Julian H. Krolik,et al.  Molecular tori in Seyfert galaxies - Feeding the monster and hiding it , 1988 .

[29]  Ž. Ivezić,et al.  Erratum: Self-similarity and scaling behaviour of infrared emission from radiatively heated dust — I. Theory , 1997 .

[30]  MID-INFRARED GALAXY CLASSIFICATION BASED ON SILICATE OBSCURATION AND PAH EQUIVALENT WIDTH , 2006, astro-ph/0611918.

[31]  G. Weigelt,et al.  Radiative transfer modeling of three-dimensional clumpy AGN tori and its application to NGC 1068 , 2006, astro-ph/0602494.

[32]  Michael Rowan-Robinson,et al.  A new model for the infrared emission of quasars , 1995 .

[33]  N. Panagia,et al.  Extinction in inhomogeneous clouds. , 1984 .

[34]  J. R. Houck,et al.  The Distribution of Silicate Strength in Spitzer Spectra of AGNs and ULIRGs , 2006, astro-ph/0612509.