Constitutive activation of brassinosteroid signaling in the Arabidopsis elongated-D/bak1 mutant

[1]  P. Maharjan,et al.  High Temperature Stimulates DWARF4 (DWF4) Expression to Increase Hypocotyl Elongation in Arabidopsis , 2011, Journal of Plant Biology.

[2]  T. Park,et al.  Auxin stimulates DWARF4 expression and brassinosteroid biosynthesis in Arabidopsis. , 2011, The Plant journal : for cell and molecular biology.

[3]  J. Chory,et al.  Extracellular leucine-rich repeats as a platform for receptor/coreceptor complex formation , 2011, Proceedings of the National Academy of Sciences.

[4]  So-Young Park,et al.  Arabidopsis brassinosteroid biosynthetic mutant dwarf7-1 exhibits slower rates of cell division and shoot induction , 2010, BMC Plant Biology.

[5]  Juan A. Oses-Prieto,et al.  PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1 , 2010, Nature Cell Biology.

[6]  E. Blancaflor,et al.  TCP1 Modulates Brassinosteroid Biosynthesis by Regulating the Expression of the Key Biosynthetic Gene DWARF4 in Arabidopsis thaliana[C][W] , 2010, Plant Cell.

[7]  Ying Sun,et al.  Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors , 2009, Nature Cell Biology.

[8]  Ana I. Caño-Delgado,et al.  Brassinosteroid signaling and auxin transport are required to establish the periodic pattern of Arabidopsis shoot vascular bundles , 2009, Proceedings of the National Academy of Sciences.

[9]  Lei Li,et al.  Arabidopsis MYB30 is a direct target of BES1 and cooperates with BES1 to regulate brassinosteroid-induced gene expression. , 2009, The Plant journal : for cell and molecular biology.

[10]  Z. Hong,et al.  Multiple Mechanism–Mediated Retention of a Defective Brassinosteroid Receptor in the Endoplasmic Reticulum of Arabidopsis[W] , 2008, The Plant Cell Online.

[11]  S. D. de Vries,et al.  Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE Proteins Serve Brassinosteroid-Dependent and -Independent Signaling Pathways1[C][W] , 2008, Plant Physiology.

[12]  A. Burlingame,et al.  BSKs Mediate Signal Transduction from the Receptor Kinase BRI1 in Arabidopsis , 2008, Science.

[13]  Eugenia Russinova,et al.  Fluorescence fluctuation analysis of Arabidopsis thaliana somatic embryogenesis receptor-like kinase and brassinosteroid insensitive 1 receptor oligomerization. , 2008, Biophysical journal.

[14]  Jonathan D. G. Jones,et al.  A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence , 2007, Nature.

[15]  Alexandra M. E. Jones,et al.  The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants , 2007, Proceedings of the National Academy of Sciences.

[16]  H. Hirt,et al.  The BRI1-Associated Kinase 1, BAK1, Has a Brassinolide-Independent Role in Plant Cell-Death Control , 2007, Current Biology.

[17]  Ho Bang Kim,et al.  Ricebending lamina 2 (bla2) mutants are defective in a cytochrome P450 (CYP734A6) gene predicted to mediate brassinosteroid catabofism , 2006, Journal of Plant Biology.

[18]  J. Chory,et al.  Downstream nuclear events in brassinosteroid signalling , 2006, Nature.

[19]  K. Chong,et al.  The brassinosteroid signal transduction pathway , 2006, Cell Research.

[20]  Ho Bang Kim,et al.  The Regulation of DWARF4 Expression Is Likely a Critical Mechanism in Maintaining the Homeostasis of Bioactive Brassinosteroids in Arabidopsis1 , 2006, Plant Physiology.

[21]  R. Hangarter,et al.  A Brassinosteroid-Hypersensitive Mutant of BAK1 Indicates That a Convergence of Photomorphogenic and Hormonal Signaling Modulates Phototropism1 , 2005, Plant Physiology.

[22]  J. Ward,et al.  BAS1 and SOB7 act redundantly to modulate Arabidopsis photomorphogenesis via unique brassinosteroid inactivation mechanisms. , 2005, The Plant journal : for cell and molecular biology.

[23]  M. Matsui,et al.  shk1-D, a dwarf Arabidopsis mutant caused by activation of the CYP72C1 gene, has altered brassinosteroid levels. , 2005, The Plant journal : for cell and molecular biology.

[24]  T. Yokota,et al.  Activation of the cytochrome P450 gene, CYP72C1, reduces the levels of active brassinosteroids in vivo. , 2005, Journal of experimental botany.

[25]  Ana I. Caño-Delgado,et al.  Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1 , 2005, Nature.

[26]  Ana I. Caño-Delgado,et al.  Heterodimerization and Endocytosis of Arabidopsis Brassinosteroid Receptors BRI1 and AtSERK3 (BAK1) , 2004, The Plant Cell Online.

[27]  Anésia A. Santos,et al.  The geminivirus nuclear shuttle protein is a virulence factor that suppresses transmembrane receptor kinase activity. , 2004, Genes & development.

[28]  Klaus F. X. Mayer,et al.  Comparative Analysis of the Receptor-Like Kinase Family in Arabidopsis and Rice , 2004, The Plant Cell Online.

[29]  Ana I. Caño-Delgado,et al.  Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteroids in Arabidopsis. , 2004, Genes & development.

[30]  S. Fujioka,et al.  CYP72B1 Inactivates Brassinosteroid Hormones: An Intersection between Photomorphogenesis and Plant Steroid Signal Transduction1 , 2003, Plant Physiology.

[31]  Robert J. Schmitz,et al.  Arabidopsis Brassinosteroid-Insensitive dwarf12Mutants Are Semidominant and Defective in a Glycogen Synthase Kinase 3β-Like Kinase1 , 2002, Plant Physiology.

[32]  S. Fujioka,et al.  An Early C-22 Oxidation Branch in the Brassinosteroid Biosynthetic Pathway , 2002, Plant Physiology.

[33]  W. Jeong,et al.  Chloroplast Cu/Zn-superoxide dismutase is a highly sensitive site in cucumber leaves chilled in the light , 2002, Planta.

[34]  Jianming Li,et al.  BRI1/BAK1, a Receptor Kinase Pair Mediating Brassinosteroid Signaling , 2002, Cell.

[35]  Jia Li,et al.  BAK1, an Arabidopsis LRR Receptor-like Protein Kinase, Interacts with BRI1 and Modulates Brassinosteroid Signaling , 2002, Cell.

[36]  Zhi-Yong Wang,et al.  The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[37]  J. Chory,et al.  BES1 Accumulates in the Nucleus in Response to Brassinosteroids to Regulate Gene Expression and Promote Stem Elongation , 2002, Cell.

[38]  J. Chory,et al.  Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. , 2002, Developmental cell.

[39]  F. Katagiri,et al.  The Arabidopsis Thaliana-Pseudomonas Syringae Interaction , 2002, The arabidopsis book.

[40]  Jianming Li,et al.  Regulation of Brassinosteroid Signaling by a GSK3/SHAGGY-Like Kinase , 2002, Science.

[41]  J. Micol,et al.  The UCU1 Arabidopsis gene encodes a SHAGGY/GSK3-like kinase required for cell expansion along the proximodistal axis. , 2002, Developmental biology.

[42]  J. Chory,et al.  BIN2, a new brassinosteroid-insensitive locus in Arabidopsis. , 2001, Plant physiology.

[43]  T. Gadella,et al.  Subcellular localization and oligomerization of the Arabidopsis thaliana somatic embryogenesis receptor kinase 1 protein. , 2001, Journal of molecular biology.

[44]  K. Feldmann,et al.  Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis. , 2001, The Plant journal : for cell and molecular biology.

[45]  J. Chory,et al.  BRI1 is a critical component of a plasma-membrane receptor for plant steroids , 2001, Nature.

[46]  K. Feldmann,et al.  Lesions in the sterol delta reductase gene of Arabidopsis cause dwarfism due to a block in brassinosteroid biosynthesis. , 2000, The Plant journal : for cell and molecular biology.

[47]  K. Feldmann,et al.  Brassinosteroid-insensitive dwarf mutants of Arabidopsis accumulate brassinosteroids. , 1999, Plant physiology.

[48]  J. Chory,et al.  Arabidopsis det2 is defective in the conversion of (24R)-24-methylcholest-4-En-3-one to (24R)-24-methyl-5alpha-cholestan-3-one in brassinosteroid biosynthesis. , 1999, Plant physiology.

[49]  B. Gregory,et al.  The Arabidopsis dwarf1 mutant is defective in the conversion of 24-methylenecholesterol to campesterol in brassinosteroid biosynthesis. , 1999, Plant physiology.

[50]  B. Gregory,et al.  The Arabidopsis dwf7/ste1 Mutant Is Defective in the Δ7 Sterol C-5 Desaturation Step Leading to Brassinosteroid Biosynthesis , 1999, Plant Cell.

[51]  D. Weigel,et al.  A genetic framework for floral patterning , 1998, Nature.

[52]  F. Nagy,et al.  Transcription of the Arabidopsis CPD gene, encoding a steroidogenic cytochrome P450, is negatively controlled by brassinosteroids. , 1998, The Plant journal : for cell and molecular biology.

[53]  S. Clouse,et al.  BRASSINOSTEROIDS: Essential Regulators of Plant Growth and Development. , 1998, Annual review of plant physiology and plant molecular biology.

[54]  K. Feldmann,et al.  The DWF4 Gene of Arabidopsis Encodes a Cytochrome P450 That Mediates Multiple 22α-Hydroxylation Steps in Brassinosteroid Biosynthesis , 1998, Plant Cell.

[55]  S. Fujioka,et al.  Biosynthesis and metabolism of brassinosteroids. , 1997, Annual review of plant biology.

[56]  S. Clouse,et al.  A Brassinosteroid-Insensitive Mutant in Arabidopsis thaliana Exhibits Multiple Defects in Growth and Development , 1996, Plant physiology.

[57]  S. Clouse Plant Chromosomes: Brassinosteroids in the spotlight , 1996, Current Biology.

[58]  K. Halliday,et al.  The ELONGATED gene of Arabidopsis acts independently of light and gibberellins in the control of elongation growth. , 1996, The Plant journal : for cell and molecular biology.

[59]  S. Clouse Plant hormones: brassinosteroids in the spotlight. , 1996, Current biology : CB.

[60]  A. Gasch,et al.  The DIMINUTO gene of Arabidopsis is involved in regulating cell elongation. , 1995, Genes & development.