Dopamine D1 receptor activation regulates sodium channel‐dependent EPSP amplification in rat prefrontal cortex pyramidal neurons

Dopamine (DA) effects on prefrontal cortex (PFC) neurons are essential for the cognitive functions mediated by this cortical area. However, the cellular mechanisms of DA neuromodulation in neocortex are not well understood. We characterized the effects of D1‐type DA receptor (D1R) activation on the amplification (increase in duration and area) of excitatory postsynaptic potentials (EPSPs) at depolarized potentials, in layer 5 pyramidal neurons from rat PFC. Simulated EPSPs (sEPSPs) were elicited by current injection, to determine the effects of D1R activation independent of modulation of transmitter release or glutamate receptor currents. Application of the D1R agonist SKF81297 attenuated sEPSP amplification at depolarized potentials in a concentration‐dependent manner. The SKF81297 effects were inhibited by the D1R antagonist SCH23390. The voltage‐gated Na+ channel blocker tetrodotoxin (TTX) abolished the effects of SKF81297 on sEPSP amplification, suggesting that Na+ currents are necessary for the D1R effect. Furthermore, blockade of 4‐AP‐ and TEA‐sensitive K+ channels in the presence of TTX significantly increased EPSP amplification, arguing against the possibility that SKF81297 up‐regulates currents that attenuate sEPSP amplification. SKF81297 application attenuated the subthreshold response to injection of depolarizing current ramps, in a manner consistent with a decrease in the persistent Na+ current. In addition, D1R activation decreased the effectiveness of temporal EPSP summation during 20 Hz sEPSP trains, selectively at depolarized membrane potentials. Therefore, the effects of D1R activation on Na+ channel‐dependent EPSP amplification may regulate the impact of coincidence detection versus temporal integration mechanisms in PFC pyramidal neurons.

[1]  P. Schwindt,et al.  Properties of persistent sodium conductance and calcium conductance of layer V neurons from cat sensorimotor cortex in vitro. , 1985, Journal of neurophysiology.

[2]  Jonathan D. Cohen,et al.  Computational perspectives on dopamine function in prefrontal cortex , 2002, Current Opinion in Neurobiology.

[3]  G. Stuart,et al.  Dependence of EPSP Efficacy on Synapse Location in Neocortical Pyramidal Neurons , 2002, Science.

[4]  D. Surmeier,et al.  Dendritic Excitability of Mouse Frontal Cortex Pyramidal Neurons Is Shaped by the Interaction among HCN, Kir2, and Kleak Channels , 2005, The Journal of Neuroscience.

[5]  C. Koch,et al.  A brief history of time (constants). , 1996, Cerebral cortex.

[6]  R. Malenka,et al.  Cocaine-Induced Plasticity of Intrinsic Membrane Properties in Prefrontal Cortex Pyramidal Neurons: Adaptations in Potassium Currents , 2005, The Journal of Neuroscience.

[7]  P. Goldman-Rakic Cellular basis of working memory , 1995, Neuron.

[8]  William A Catterall,et al.  Transmitter Modulation of Slow, Activity-Dependent Alterations in Sodium Channel Availability Endows Neurons with a Novel Form of Cellular Plasticity , 2003, Neuron.

[9]  L. Cauller,et al.  Synaptic physiology of horizontal afferents to layer I in slices of rat SI neocortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  L. Kaczmarek,et al.  Opposite Regulation of Slick and Slack K+ Channels by Neuromodulators , 2006, The Journal of Neuroscience.

[11]  N. Spruston,et al.  Determinants of Voltage Attenuation in Neocortical Pyramidal Neuron Dendrites , 1998, The Journal of Neuroscience.

[12]  P. Goldman-Rakic,et al.  Regional, cellular, and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  B W Connors,et al.  Backward cortical projections to primary somatosensory cortex in rats extend long horizontal axons in layer I , 1998, The Journal of comparative neurology.

[14]  Charles J. Wilson,et al.  Selective blockade of a slowly inactivating potassium current in striatal neurons by (±) 6‐chloro‐APB hydrobromide (SKF82958) , 1998, Synapse.

[15]  A. L. Goldin,et al.  Resurgence of sodium channel research. , 2001, Annual review of physiology.

[16]  P. Schwindt,et al.  Amplification of synaptic current by persistent sodium conductance in apical dendrite of neocortical neurons. , 1995, Journal of neurophysiology.

[17]  J. Magee Dendritic Hyperpolarization-Activated Currents Modify the Integrative Properties of Hippocampal CA1 Pyramidal Neurons , 1998, The Journal of Neuroscience.

[18]  Charles R. Yang,et al.  Dopamine D1/D5 Receptor Modulates State-Dependent Switching of Soma-Dendritic Ca2+ Potentials via Differential Protein Kinase A and C Activation in Rat Prefrontal Cortical Neurons , 2004, The Journal of Neuroscience.

[19]  G. Stuart,et al.  Voltage–activated sodium channels amplify inhibition in neocortical pyramidal neurons , 1999, Nature Neuroscience.

[20]  P. Goldman-Rakic,et al.  Presynaptic D1 Dopamine Receptors in Primate Prefrontal Cortex: Target-Specific Expression in the Glutamatergic Synapse , 2005, The Journal of Neuroscience.

[21]  J. Lambert,et al.  Somatic amplification of distally generated subthreshold EPSPs in rat hippocampal pyramidal neurones , 1999, The Journal of physiology.

[22]  D. Surmeier,et al.  D1/D5 Dopamine Receptor Activation Differentially Modulates Rapidly Inactivating and Persistent Sodium Currents in Prefrontal Cortex Pyramidal Neurons , 2001, The Journal of Neuroscience.

[23]  G. Matthews,et al.  Impaired Firing and Cell-Specific Compensation in Neurons Lacking Nav1.6 Sodium Channels , 2006, The Journal of Neuroscience.

[24]  Yan Dong,et al.  Dopamine D1-Class Receptors Selectively Modulate a Slowly Inactivating Potassium Current in Rat Medial Prefrontal Cortex Pyramidal Neurons , 2003, The Journal of Neuroscience.

[25]  J. Zhu,et al.  Rapid Arrival and Integration of Ascending Sensory Information in Layer 1 Nonpyramidal Neurons and Tuft Dendrites of Layer 5 Pyramidal Neurons of the Neocortex , 2004, The Journal of Neuroscience.

[26]  W Zieglgänsberger,et al.  Voltage dependence of excitatory postsynaptic potentials of rat neocortical neurons. , 1991, Journal of neurophysiology.

[27]  Shaul Hestrin,et al.  Background synaptic conductance and precision of EPSP-spike coupling at pyramidal cells. , 2005, Journal of neurophysiology.

[28]  Antonieta Lavin,et al.  Mechanisms Underlying Differential D1 versus D2 Dopamine Receptor Regulation of Inhibition in Prefrontal Cortex , 2004, The Journal of Neuroscience.

[29]  J. Seamans,et al.  Contributions of Voltage-Gated Ca2+ Channels in the Proximal versus Distal Dendrites to Synaptic Integration in Prefrontal Cortical Neurons , 1997, The Journal of Neuroscience.

[30]  G. Barrionuevo,et al.  Voltage-gated sodium channels shape subthreshold EPSPs in layer 5 pyramidal neurons from rat prefrontal cortex. , 2001, Journal of neurophysiology.

[31]  N. Volkow,et al.  Unmanageable Motivation in Addiction: A Pathology in Prefrontal-Accumbens Glutamate Transmission , 2005, Neuron.

[32]  H. Markram,et al.  Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. , 1997, The Journal of physiology.

[33]  J. Hablitz,et al.  EPSPs in rat neocortical neurons in vitro. II. Involvement of N-methyl-D-aspartate receptors in the generation of EPSPs. , 1989, Journal of neurophysiology.

[34]  W. Crill,et al.  Persistent sodium current in mammalian central neurons. , 1996, Annual review of physiology.

[35]  E. Geijo-Barrientos,et al.  The Effects of Dopamine on the Subthreshold Electrophysiological Responses of Rat Prefrontal Cortex Neurons In Vitro , 1995, The European journal of neuroscience.

[36]  D. Johnston,et al.  Dopaminergic Regulation of Neuronal Excitability through Modulation of Ih in Layer V Entorhinal Cortex , 2006, The Journal of Neuroscience.

[37]  Nicolas Maurice,et al.  D2 Dopamine Receptor-Mediated Modulation of Voltage-Dependent Na+ Channels Reduces Autonomous Activity in Striatal Cholinergic Interneurons , 2004, The Journal of Neuroscience.

[38]  A. Grace,et al.  Stimulation of D1-type dopamine receptors enhances excitability in prefrontal cortical pyramidal neurons in a state-dependent manner , 2001, Neuroscience.

[39]  William A. Catterall,et al.  Neuromodulation of Na+ channels: An unexpected form of cellular platicity , 2001, Nature Reviews Neuroscience.

[40]  M. Gutnick,et al.  Activation of protein kinase C increases neuronal excitability by regulating persistent Na+ current in mouse neocortical slices. , 1998, Journal of neurophysiology.

[41]  J. Magee,et al.  Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons , 2000, Nature Neuroscience.

[42]  CR Yang,et al.  Dopamine D1 receptor actions in layers V-VI rat prefrontal cortex neurons in vitro: modulation of dendritic-somatic signal integration , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[43]  P. Gaspar,et al.  D1 and D2 Receptor Gene Expression in the Rat Frontal Cortex: Cellular Localization in Different Classes of Efferent Neurons , 1995, The European journal of neuroscience.

[44]  D. Henze,et al.  Dopamine increases excitability of pyramidal neurons in primate prefrontal cortex. , 2000, Journal of neurophysiology.

[45]  T. Mittmann,et al.  Evidence for persistent Na+ current in apical dendrites of rat neocortical neurons from imaging of Na+-sensitive dye. , 1997, Journal of neurophysiology.

[46]  S. R. Nash,et al.  Dopamine receptors: from structure to function. , 1998, Physiological reviews.

[47]  M. Gutnick,et al.  Persistent Sodium Current in Layer 5 Neocortical Neurons Is Primarily Generated in the Proximal Axon , 2006, The Journal of Neuroscience.

[48]  Yan Dong,et al.  Dopamine Modulates Inwardly Rectifying Potassium Currents in Medial Prefrontal Cortex Pyramidal Neurons , 2004, The Journal of Neuroscience.

[49]  B. Sakmann,et al.  Amplification of EPSPs by axosomatic sodium channels in neocortical pyramidal neurons , 1995, Neuron.

[50]  D. Jaffe,et al.  Dopamine Decreases the Excitability of Layer V Pyramidal Cells in the Rat Prefrontal Cortex , 1998, The Journal of Neuroscience.

[51]  G. Stuart,et al.  Site of Action Potential Initiation in Layer 5 Pyramidal Neurons , 2006, The Journal of Neuroscience.

[52]  H. Maeno,et al.  Dopamine Receptors , 2018 .

[53]  G. Avanzini,et al.  Protein kinase C‐dependent modulation of Na+ currents increases the excitability of rat neocortical pyramidal neurones , 2000, The Journal of physiology.

[54]  F. J. White,et al.  Repeated Cocaine Administration Increases Voltage-sensitive Calcium Currents in Response to Membrane Depolarization in Medial Prefrontal Cortex Pyramidal Neurons , 2022 .

[55]  J. Seamans,et al.  The principal features and mechanisms of dopamine modulation in the prefrontal cortex , 2004, Progress in Neurobiology.

[56]  D. Jaffe,et al.  Multiple effects of dopamine on layer V pyramidal cell excitability in rat prefrontal cortex. , 2001, Journal of neurophysiology.

[57]  L. Kaczmarek,et al.  For K+ channels, Na+ is the new Ca2+ , 2005, Trends in Neurosciences.

[58]  J. Magee,et al.  Distance-Dependent Increase in AMPA Receptor Number in the Dendrites of Adult Hippocampal CA1 Pyramidal Neurons , 2001, The Journal of Neuroscience.

[59]  F. Helmchen,et al.  Background Synaptic Activity Is Sparse in Neocortex , 2006, The Journal of Neuroscience.

[60]  J. Seamans,et al.  DOPAMINE D1/5 RECEPTOR-MEDIATED LTP OF INTRINSIC EXCITABILITY IN RAT PREFRONTAL CORTICAL NEURONS: Ca-DEPENDENT INTRACELLULAR SIGNALING , 2007 .

[61]  T. Mittmann,et al.  Muscarinic inhibition of persistent Na+ current in rat neocortical pyramidal neurons. , 1998, Journal of neurophysiology.

[62]  D. Surmeier,et al.  Neuromodulation of Na+ Channel Slow Inactivation via cAMP-Dependent Protein Kinase and Protein Kinase C , 2006, Neuron.

[63]  C. Colbert,et al.  Ion channel properties underlying axonal action potential initiation in pyramidal neurons , 2002, Nature Neuroscience.

[64]  Nelson Spruston,et al.  Distance-Dependent Differences in Synapse Number and AMPA Receptor Expression in Hippocampal CA1 Pyramidal Neurons , 2006, Neuron.

[65]  F. J. White,et al.  Repeated Amphetamine Administration Decreases D1 Dopamine Receptor-Mediated Inhibition of Voltage-Gated Sodium Currents in the Prefrontal Cortex , 2006, The Journal of Neuroscience.

[66]  A. M. Rush,et al.  Electrophysiological properties of two axonal sodium channels, Nav1.2 and Nav1.6, expressed in mouse spinal sensory neurones , 2005, The Journal of physiology.

[67]  G. Kinney,et al.  Dynamic Influences on Coincidence Detection in Neocortical Pyramidal Neurons , 2004, The Journal of Neuroscience.

[68]  Yuguo Yu,et al.  Properties of action-potential initiation in neocortical pyramidal cells: evidence from whole cell axon recordings. , 2007, Journal of neurophysiology.

[69]  E. Abercrombie,et al.  Decreased striatal dopamine efflux after intrastriatal application of benzazepine-class D1 agonists is not mediated via dopamine receptors , 2001, Brain Research Bulletin.

[70]  W. Senn,et al.  Top-down dendritic input increases the gain of layer 5 pyramidal neurons. , 2004, Cerebral cortex.

[71]  A. Destexhe,et al.  The high-conductance state of neocortical neurons in vivo , 2003, Nature Reviews Neuroscience.

[72]  A. Frick,et al.  NMDA and AMPA receptors on neocortical neurons are differentially distributed , 1998, The European journal of neuroscience.

[73]  Lyle J. Graham,et al.  Contrasting Effects of the Persistent Na+ Current on Neuronal Excitability and Spike Timing , 2006, Neuron.

[74]  N. Gorelova,et al.  Dopamine D1/D5 receptor activation modulates a persistent sodium current in rat prefrontal cortical neurons in vitro. , 2000, Journal of neurophysiology.

[75]  Richard Miles,et al.  EPSP Amplification and the Precision of Spike Timing in Hippocampal Neurons , 2000, Neuron.

[76]  G. González-Burgos,et al.  Pathophysiologically based treatment interventions in schizophrenia , 2006, Nature Medicine.

[77]  J. Seamans,et al.  Dopamine D1/5 receptor-mediated long-term potentiation of intrinsic excitability in rat prefrontal cortical neurons: Ca2+-dependent intracellular signaling. , 2007, Journal of neurophysiology.

[78]  B. Sakmann,et al.  Action potential initiation and propagation in rat neocortical pyramidal neurons , 1997, The Journal of physiology.

[79]  F. Borsini,et al.  Effect of antipsychotic drugs and selective dopaminergic antagonists on dopamine-induced facilitatory activity in prelimbic cortical pyramidal neurons. An in vitro study , 1999, Neuroscience.

[80]  B. Lewis,et al.  Ventral tegmental area afferents to the prefrontal cortex maintain membrane potential 'up' states in pyramidal neurons via D(1) dopamine receptors. , 2000, Cerebral cortex.

[81]  T. Sejnowski,et al.  Dopamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[82]  G. Stuart,et al.  Single Ih Channels in Pyramidal Neuron Dendrites: Properties, Distribution, and Impact on Action Potential Output , 2006, The Journal of Neuroscience.

[83]  W. Catterall,et al.  Voltage-Dependent Neuromodulation of Na+ Channels by D1-Like Dopamine Receptors in Rat Hippocampal Neurons , 1999, The Journal of Neuroscience.

[84]  R. Silver,et al.  Synaptic connections between layer 4 spiny neurone‐ layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column , 2002, The Journal of physiology.

[85]  A. Thomson,et al.  N-methylaspartate receptors mediate epileptiform activity evoked in some, but not all, conditions in rat neocortical slices , 1986, Neuroscience.

[86]  N. Spruston,et al.  Serotonin Receptor Activation Inhibits Sodium Current and Dendritic Excitability in Prefrontal Cortex via a Protein Kinase C-Dependent Mechanism , 2002, The Journal of Neuroscience.