The Small Maturity Implied Volatility Slope for L\'evy Models

We consider the at-the-money strike derivative of implied volatility as the maturity tends to zero. Our main results quantify the growth of the slope for infinite activity exponential Levy models. As auxiliary results, we obtain the limiting values of short maturity digital call options, using Mellin transform asymptotics. Finally, we discuss when the at-the-money slope is consistent with the steepness of the smile wings, as given by Lee's moment formula.

[1]  P. Tankov Pricing and Hedging in Exponential Lévy Models: Review of Recent Results , 2011 .

[2]  R. Doney,et al.  Stability and Attraction to Normality for Lévy Processes at Zero and at Infinity , 2002 .

[3]  P. Carr,et al.  What Type of Process Underlies Options? A Simple Robust Test , 2003 .

[4]  Jim Gatheral The Volatility Surface: A Practitioner's Guide , 2006 .

[5]  Kun Gao,et al.  Asymptotics of implied volatility to arbitrary order , 2011, Finance Stochastics.

[6]  Jean-Philippe Bouchaud,et al.  We've walked a million miles for one of these smiles , 2012 .

[7]  S. Gerhold Can There Be an Explicit Formula for Implied Volatility? , 2012, 1211.4978.

[8]  Stefan Gerhold,et al.  On refined volatility smile expansion in the Heston model , 2010, 1001.3003.

[9]  Michael Roper,et al.  ON THE RELATIONSHIP BETWEEN THE CALL PRICE SURFACE AND THE IMPLIED VOLATILITY SURFACE CLOSE TO EXPIRY , 2009 .

[10]  Jos'e E. Figueroa-L'opez,et al.  Small-time expansions for the transition distributions of Lévy processes , 2008, 0809.0849.

[11]  Peter Friz,et al.  SMILE ASYMPTOTICS II: MODELS WITH KNOWN MOMENT GENERATING FUNCTIONS , 2006 .

[12]  On Asymptotic Behavior of Some Functionals of Processes with Independent Increments , 1971 .

[13]  José E. Figueroa-López,et al.  HIGH‐ORDER SHORT‐TIME EXPANSIONS FOR ATM OPTION PRICES OF EXPONENTIAL LÉVY MODELS , 2012, 1208.5520.

[14]  佐藤 健一 Lévy processes and infinitely divisible distributions , 2013 .

[15]  S. Gerhold,et al.  Small time central limit theorems for semimartingales with applications , 2012, 1208.4282.

[16]  Roger Lee Option Pricing by Transform Methods: Extensions, Unification, and Error Control , 2004 .

[17]  José E. Figueroa-López,et al.  The Small-Maturity Smile for Exponential Lévy Models , 2011, SIAM J. Financial Math..

[18]  Jean Jacod,et al.  Is Brownian motion necessary to model high-frequency data? , 2010, 1011.2635.

[19]  C. Houdr'e,et al.  Small-time expansions of the distributions, densities, and option prices of stochastic volatility models with Lévy jumps , 2010, 1009.4211.

[20]  Valdo Durrleman,et al.  From implied to spot volatilities , 2008, Finance Stochastics.

[21]  Antoine Jacquier The large-time smile and skew for exponential Levy models , 2011 .

[22]  A. Kyprianou Introductory Lectures on Fluctuations of Lévy Processes with Applications , 2006 .

[23]  Telling from Discrete Data Whether the Underlying Continuous-Time Model is a Diffusion , 2002 .

[24]  Leif Andersen,et al.  Asymptotics for Exponential Levy Processes and Their Volatility Smile: Survey and New Results , 2012, 1206.6787.

[25]  Peter Tankov,et al.  A New Look at Short‐Term Implied Volatility in Asset Price Models with Jumps , 2012 .

[26]  Giles Peter Jewitt,et al.  The Volatility Surface , 2015 .

[27]  Philippe Flajolet,et al.  Mellin Transforms and Asymptotics: Harmonic Sums , 1995, Theor. Comput. Sci..

[28]  Implied volatility explosions: European calls and implied volatilities close to expiry in exponential L\'evy models , 2008, 0809.3305.

[29]  S. Levendorskii,et al.  Non-Gaussian Merton-Black-Scholes theory , 2002 .

[30]  Roger Lee THE MOMENT FORMULA FOR IMPLIED VOLATILITY AT EXTREME STRIKES , 2004 .

[31]  Peter Tankov,et al.  Asymptotic results for time-changed Lévy processes sampled at hitting times , 2011 .