Recent Developments in Optical Wireless Communications using Infrared and Visible Light

For future short-range applications, optical wireless communications present a viable and promising supplemental technology to radio wireless systems. This contribution presents a review of infrared and visible light optical wireless indoor communications, including basics, state of the art, challenges and prospects. Advanced approaches based on diversity techniques and adaptive signal processing show potential to achieve both high spatial coverage and high bit rates of more than 100 Mb/s.

[1]  Robert J. Mears,et al.  Development of a CMOS 310-Mb/s receiver for free-space optical wireless links , 2001, SPIE Optics East.

[2]  Mohsen Kavehrad,et al.  High-speed power-efficient indoor wireless infrared communication using code combining .II , 2002, IEEE Trans. Commun..

[3]  Zabih Ghassemlooy,et al.  The effect of baseline wander on the performance of digital pulse interval modulation , 1999 .

[4]  Tomoaki Ohtsuki,et al.  Parallel combinatory multiple-subcarrier optical wireless communication systems , 2005, Int. J. Commun. Syst..

[5]  Jean Armstrong,et al.  Power efficient optical OFDM , 2006 .

[6]  Y. D. Gong,et al.  Study of optical wireless CDMA receivers , 2002, 2002 3rd International Conference on Microwave and Millimeter Wave Technology, 2002. Proceedings. ICMMT 2002..

[7]  Tomoaki Ohtsuki,et al.  Multiple-subcarrier optical communication systems with subcarrier signal-point sequence , 2005, IEEE Transactions on Communications.

[8]  Masao Nakagawa,et al.  Fundamental analysis for visible-light communication system using LED lights , 2004, IEEE Transactions on Consumer Electronics.

[9]  D. R. Wisely,et al.  155 Mbit/s optical wireless link using a bootstrapped silicon APD receiver , 1994 .

[10]  Tomoaki Ohtsuki,et al.  Parallel combinatory multiple-subcarrier optical communication systems , 2002, The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications.

[11]  Dave Wisely,et al.  A 100 Mbit/s tracked optical wireless telepoint , 1997, Proceedings of 8th International Symposium on Personal, Indoor and Mobile Radio Communications - PIMRC '97.

[12]  Chi-Ho Chan,et al.  LED wireless , 2002 .

[13]  Volker Jungnickel,et al.  155 Mbit/s wireless transmission with imaging infrared receiver , 2001 .

[14]  Joachim Walewski,et al.  Visible Light Communications , 2009 .

[15]  Joseph M. Kahn,et al.  Angle diversity for nondirected wireless infrared communication , 1998, ICC '98. 1998 IEEE International Conference on Communications. Conference Record. Affiliated with SUPERCOMM'98 (Cat. No.98CH36220).

[16]  Xavier Fernando Performance of an infrared wireless CDMA system , 2003, SPIE Defense + Commercial Sensing.

[17]  LED wireless-IEEE Industry Applications Magazine , 2001 .

[18]  Joseph M. Kahn,et al.  Performance evaluation of experimental 50-Mb/s diffuse infrared wireless link using on-off keying with decision-feedback equalization , 1996, IEEE Trans. Commun..

[19]  Joseph M. Kahn,et al.  Wireless Infrared Communications , 1994 .

[20]  V. Jungnickel,et al.  Capacity analysis in indoor wireless infrared communication using adaptive multiple subcarrier transmission , 2005, Proceedings of 2005 7th International Conference Transparent Optical Networks, 2005..

[21]  Harald Haas,et al.  Visible light communication using OFDM , 2006, 2nd International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities, 2006. TRIDENTCOM 2006..

[22]  John R. Barry,et al.  Performance of pulse-position modulation on measured non-directed indoor infrared channels , 1996, IEEE Trans. Commun..

[23]  M. Nakagawa,et al.  Performance evaluation of narrowband OFDM on integrated system of power line communication and visible light wireless communication , 2006, 2006 1st International Symposium on Wireless Pervasive Computing.

[24]  M. Castillo-Vazquez,et al.  Self-orienting receiver for indoor wireless infrared links at high bit rates , 2003, The 57th IEEE Semiannual Vehicular Technology Conference, 2003. VTC 2003-Spring..

[25]  A. Puerta-Notario,et al.  Performance evaluation of rate-adaptive transmission techniques for optical wireless communications , 2004, 2004 IEEE 59th Vehicular Technology Conference. VTC 2004-Spring (IEEE Cat. No.04CH37514).

[26]  M. Kavehard,et al.  Multispot diffusing configuration for wireless infrared access , 2000, IEEE Trans. Commun..

[27]  M. Castillo-Vazquez,et al.  Angle diversity with rate-adaptive transmission using repetition coding and variable silence periods for wireless infrared communications , 2004, 2004 IEEE 59th Vehicular Technology Conference. VTC 2004-Spring (IEEE Cat. No.04CH37514).

[28]  Tomoaki Ohtsuki Rate adaptive indoor infrared wireless communication systems using repeated and punctured convolutional codes , 1999, 1999 IEEE International Conference on Communications (Cat. No. 99CH36311).

[29]  Joseph M. Kahn,et al.  Average power reduction techniques for multiple-subcarrier intensity-modulated optical signals , 2001, IEEE Trans. Commun..

[30]  Rafael Perez-Jimenez,et al.  OFDM over indoor wireless optical channel , 2005 .

[31]  Masao Nakagawa,et al.  Indoor visible communication utilizing plural white LEDs as lighting , 2001, 12th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. PIMRC 2001. Proceedings (Cat. No.01TH8598).

[32]  J. Kahn,et al.  Multiple-subcarrier modulation for non-directed wireless infrared communication , 1994, 1994 IEEE GLOBECOM. Communications: The Global Bridge.

[33]  Ramjee Prasad,et al.  Multicarrier techniques for 4G mobile communications , 2003 .

[34]  Iwao Sasase,et al.  Multiple subcarrier modulation for infrared wireless systems using punctured convolutional codes and variable amplitude block codes , 2002, Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE.

[35]  Tomoaki Ohtsuki Multiple-subcarrier modulation in optical wireless communications , 2003, IEEE Commun. Mag..

[36]  Anthony C. Boucouvalas Indoor ambient light noise and its effect on wireless optical links , 1996 .

[37]  Volker Jungnickel,et al.  Electronic tracking for wireless infrared communications , 2003, IEEE Trans. Wirel. Commun..

[38]  D. R. Wisely,et al.  Hub architecture for infra-red wireless networks in office environments , 1999 .

[39]  Tomoaki Ohtsuki,et al.  Multiple-subcarrier optical communication systems with peak reduction carriers , 2003, GLOBECOM '03. IEEE Global Telecommunications Conference (IEEE Cat. No.03CH37489).

[40]  Christian Boisrobert,et al.  Free-Space Optics , 2006 .

[41]  Joseph M. Kahn,et al.  Multiple-Subcarrier Modulation for Nondirected Wireless Infrared Communication , 1994, IEEE J. Sel. Areas Commun..

[42]  D. R. Wisely,et al.  A 1 Gbit/s optical wireless tracked architecture for ATM delivery , 1996 .

[43]  Joseph M. Kahn,et al.  Differential pulse-position modulation for power-efficient optical communication , 1999, IEEE Trans. Commun..

[44]  Joachim Walewski,et al.  High-Speed Wireless Indoor Communication via Visible Light , 2007 .

[45]  Antonio Puerta-Notario,et al.  Rate-adaptive indoor wireless infrared links using OOK formats with alternate-position Gaussian pulses , 2001 .

[46]  Joseph M. Kahn,et al.  Rate-adaptive modulation techniques for infrared wireless communications , 1999, 1999 IEEE International Conference on Communications (Cat. No. 99CH36311).

[47]  Iwao Sasase,et al.  Rate-adaptive indoor infrared wireless communication systems using punctured convolutional codes and adaptive PPM , 2001 .

[48]  Joseph M. Kahn,et al.  Average power reduction techniques for multiple-subcarrier intensity-modulated optical signals , 2000, 2000 IEEE International Conference on Communications. ICC 2000. Global Convergence Through Communications. Conference Record.

[49]  Mohsen Kavehrad,et al.  High-speed power-efficient indoor wireless infrared communication using code combining .I , 2002, IEEE Trans. Commun..

[50]  Mohsen Kavehrad,et al.  MIMO characterization of indoor wireless optical link using a diffuse-transmission configuration , 2003, IEEE Trans. Commun..

[51]  M. Kavehrad,et al.  Broadband access over medium and low voltage power-lines and use of white light emitting diodes for indoor communications , 2006, CCNC 2006. 2006 3rd IEEE Consumer Communications and Networking Conference, 2006..

[52]  Rui Valadas,et al.  Optical interference produced by artificial light , 1997, Wirel. Networks.