A Local Velocity Grid Approach for BGK Equation

The solution of complex rarefied flows with the BGK equation and the Discrete Velocity Method (DVM) requires a large number of velocity grid points leading to significant computational costs. We propose an adaptive velocity grid approach exploiting the fact that locally in space, the distribution function is supported only by a subset of the global velocity grid. The velocity grid is adapted thanks to criteria based on local temperature, velocity and on the enforcement of mass conservation. Simulations in 1D and 2D are presented for different Knudsen numbers and compared to a global velocity grid BGK solution, showing the computational gain of the proposed approach.

[1]  Florian Bernard,et al.  Accurate Asymptotic Preserving Boundary Conditions for Kinetic Equations on Cartesian Grids , 2015, J. Sci. Comput..

[2]  Giacomo Dimarco,et al.  Numerical methods for kinetic equations* , 2014, Acta Numerica.

[3]  Lorenzo Pareschi,et al.  Modeling and Computational Methods for Kinetic Equations , 2012 .

[4]  Kun Xu,et al.  A unified gas kinetic scheme with moving mesh and velocity space adaptation , 2012, J. Comput. Phys..

[5]  Gabriella Puppo,et al.  A hybrid method for hydrodynamic-kinetic flow - Part II - Coupling of hydrodynamic and kinetic models , 2012, J. Comput. Phys..

[6]  P. Wilcox,et al.  AIP Conference Proceedings , 2012 .

[7]  Kun Xu,et al.  A unified gas-kinetic scheme for continuum and rarefied flows IV: Full Boltzmann and model equations , 2011, J. Comput. Phys..

[8]  Lorenzo Pareschi,et al.  Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2010, 1009.2757.

[9]  Shi Jin,et al.  An Asymptotic Preserving Scheme for the ES-BGK Model of the Boltzmann Equation , 2010, J. Sci. Comput..

[10]  Shi Jin,et al.  A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources , 2009, J. Comput. Phys..

[11]  S. Chia AIP Conference Proceedings , 2008 .

[12]  Gabriella Puppo,et al.  Implicit–Explicit Schemes for BGK Kinetic Equations , 2007, J. Sci. Comput..

[13]  Patrick Le Tallec,et al.  Numerical comparison between the Boltzmann and ES-BGK models for rarefied gases ☆ , 2002 .

[14]  B. Perthame,et al.  The Gaussian-BGK model of Boltzmann equation with small Prandtl number , 2000 .

[15]  L. Mieussens Discrete-Velocity Models and Numerical Schemes for the Boltzmann-BGK Equation in Plane and Axisymmetric Geometries , 2000 .

[16]  Shi Jin,et al.  Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..

[17]  G. Bird Molecular Gas Dynamics and the Direct Simulation of Gas Flows , 1994 .

[18]  B. Perthame,et al.  Numerical passage from kinetic to fluid equations , 1991 .

[19]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[20]  P. Bhatnagar,et al.  A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .

[21]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases : an account of the kinetic theory of viscosity, thermal conduction, and diffusion in gases , 1954 .

[22]  Gabriella Puppo,et al.  Microscopically implicit-macroscopically explicit schemes for the BGK equation , 2012, J. Comput. Phys..

[23]  M. Carpenter,et al.  Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations , 2003 .

[24]  F. G. Tcheremissine,et al.  Conservative evaluation of Boltzmann collision integral in discrete ordinates approximation , 1998 .

[25]  C. Buet,et al.  A discrete-velocity scheme for the Boltzmann operator of rarefied gas dynamics , 1996 .

[26]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[27]  C. Chu Kinetic‐Theoretic Description of the Formation of a Shock Wave , 1965 .