Foundations of Computational Mathematics: Kronecker's smart, little black boxes

[1]  Michael Clausen,et al.  Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.

[2]  Joos Heintz,et al.  On the Time–Space Complexity of Geometric Elimination Procedures , 2001, Applicable Algebra in Engineering, Communication and Computing.

[3]  Teresa Krick,et al.  A computational method for diophantine approximation , 1996 .

[4]  Marc Giusti,et al.  Lower bounds for diophantine approximations , 1997 .

[5]  J. E. Morais,et al.  Straight--Line Programs in Geometric Elimination Theory , 1996, alg-geom/9609005.

[6]  J. E. Morais,et al.  When Polynomial Equation Systems Can Be "Solved" Fast? , 1995, AAECC.

[7]  José Maria Turull Torres,et al.  The space complexity of elimination theory: upper bounds , 1997 .

[8]  Ernst W. Mayr,et al.  Membership in Plynomial Ideals over Q Is Exponential Space Complete , 1989, STACS.

[9]  G. A. Dirac,et al.  Moderne Algebra. I , 1951 .

[10]  F. S. Macaulay,et al.  The Algebraic Theory of Modular Systems , 1972 .

[11]  Alicia Dickenstein,et al.  The membership problem for unmixed polynomial ideals is solvable in single exponential time , 1991, Discret. Appl. Math..

[12]  Joos Heintz,et al.  On the Intrinsic Complexity of Elimination Theory , 1993, J. Complex..

[13]  Joachim von zur Gathen,et al.  Parallel Arithmetic Computations: A Survey , 1986, MFCS.

[14]  Guillermo Matera,et al.  Probabilistic Algorithms for Geometric Elimination , 1999, Applicable Algebra in Engineering, Communication and Computing.

[15]  Olga Taussky,et al.  Moderne Algebra , 1933 .

[16]  Patrizia M. Gianni,et al.  Algebraic Solution of Systems of Polynomial Equations Using Groebner Bases , 1987, AAECC.

[17]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[18]  Hidetsune Kobayashi,et al.  Solving Systems of Algebraic Equations , 1988, ISSAC.

[19]  R. Narasimhan,et al.  Introduction To The Theory Of Analytic Spaces , 1966 .

[20]  Luis M. Pardo,et al.  Kronecker's and Newton's Approaches to Solving: A First Comparison , 2001, J. Complex..

[21]  Chee-Keng Yap,et al.  A New Lower Bound Construction for Commutative Thue Systems with aApplications , 1991, J. Symb. Comput..