Towards high-capacity quantum communications by combining wavelength and time-division multiplexing technologies

In this work, by combining the wavelength- and time-division multiplexing technologies, we demonstrate a multiplexing time-bin entangled photon pair source based on a silicon nanowire waveguide and distribute entangled photons into 3(time) × 14(wavelength) channels independently. The indistinguishability of photon pairs in each time channel is confirmed by a fourfold Hong-Ou-Mandal quantum interference.

[1]  T. Lunghi,et al.  Optimal analysis of ultra broadband energy-time entanglement for high bit-rate dense wavelength division multiplexed quantum networks , 2016, 1605.09147.

[2]  Multiplexed entangled photon-pair sources for all-fiber quantum networks , 2016, 1605.04701.

[3]  B J Eggleton,et al.  Enhancing the heralded single-photon rate from a silicon nanowire by time and wavelength division multiplexing pump pulses. , 2015, Optics letters.

[4]  Jeremy L O'Brien,et al.  Active temporal and spatial multiplexing of photons , 2016 .

[5]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[6]  S. Chu,et al.  Generation of multiphoton entangled quantum states by means of integrated frequency combs , 2016, Science.

[7]  Marek Zukowski,et al.  Experimental violation of local realism by four-photon Greenberger-Horne-Zeilinger entanglement. , 2003, Physical review letters.

[8]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[9]  Marco Bentivegna,et al.  High-quality photonic entanglement for wavelength-multiplexed quantum communication based on a silicon chip , 2016, 1609.00521.

[10]  Philip H. W. Leong,et al.  Active temporal multiplexing of indistinguishable heralded single photons , 2015, Nature Communications.

[11]  M. W. Mitchell,et al.  Super-resolving phase measurements with a multiphoton entangled state , 2004, Nature.

[12]  H. Weinfurter,et al.  Experimental Entanglement Swapping: Entangling Photons That Never Interacted , 1998 .

[13]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[14]  H. Takesue,et al.  Entanglement swapping using telecom-band photons generated in fibers. , 2009, Optics express.

[15]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[16]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[17]  Yin-Hai Li,et al.  On-Chip Multiplexed Multiple Entanglement Sources in a Single Silicon Nanowire , 2017 .

[18]  Christoph Simon,et al.  Entangling independent photons by time measurement , 2007, 0704.0758.

[19]  W Tittel,et al.  Distribution of time-bin entangled qubits over 50 km of optical fiber. , 2004, Physical review letters.

[20]  Lixin Xu,et al.  Multiplexed entangled photon-pair sources for all-fiber quantum networks , 2016, SPIE/COS Photonics Asia.

[21]  N. Gisin,et al.  Violation of Bell Inequalities by Photons More Than 10 km Apart , 1998, quant-ph/9806043.

[22]  N. Gisin,et al.  Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication , 1999 .

[23]  Peter C Humphreys,et al.  Linear optical quantum computing in a single spatial mode. , 2013, Physical review letters.

[24]  Yan Li,et al.  CW-pumped telecom band polarization entangled photon pair generation in a Sagnac interferometer. , 2015, Optics express.

[25]  Shih,et al.  New high-intensity source of polarization-entangled photon pairs. , 1995, Physical review letters.

[26]  Wei Zhang,et al.  Orbital Angular Momentum-Entanglement Frequency Transducer. , 2016, Physical review letters.

[27]  Djeylan Aktas,et al.  Entanglement distribution over 150 km in wavelength division multiplexed channels for quantum cryptography , 2016, 1601.02402.

[28]  A. Willner,et al.  Terabit free-space data transmission employing orbital angular momentum multiplexing , 2012, Nature Photonics.

[29]  Roberto Morandotti,et al.  On-chip generation of high-dimensional entangled quantum states and their coherent control , 2017, Nature.