A multivariate hybrid approach applied to AISI 52100 hardened steel turning optimization

[1]  K. Chiang,et al.  Optimization of the WEDM process of particle-reinforced material with multiple performance characteristics using grey relational analysis , 2006 .

[2]  C. Fung,et al.  Multi-response optimization in friction properties of PBT composites using Taguchi method and principle component analysis , 2005 .

[3]  Sehyung Park,et al.  3D welding and milling: part II—optimization of the 3D welding process using an experimental design approach , 2005 .

[4]  Makarand S. Kulkarni,et al.  Multiple response optimization for improved machined surface quality , 2003 .

[5]  Rudolf G. Kittlitz,et al.  Detection of Multiple Change Points from Clustering Individual Observations , 2003 .

[6]  N. Doganaksoy,et al.  Joint Optimization of Mean and Standard Deviation Using Response Surface Methods , 2003 .

[7]  S. K. Choudhury,et al.  Role of temperature and surface finish in predicting tool wear using neural network and design of experiments , 2003 .

[8]  Makarand S. Kulkarni,et al.  Combined Taguchi and dual response method for optimization of a centerless grinding operation , 2003 .

[9]  Hung‐Chang Liao,et al.  Optimizing multi‐response problem in the Taguchi method by DEA based ranking method , 2002 .

[10]  George-Christopher Vosniakos,et al.  Prediction of surface roughness in CNC face milling using neural networks and Taguchi's design of experiments , 2002 .

[11]  Y. S. Tarng,et al.  Optimization of the electrical discharge machining process based on the Taguchi method with fuzzy logics , 2000 .

[12]  Y. S. Tarng,et al.  Optimization of turning operations with multiple performance characteristics , 1999 .

[13]  Imtiaz Ahmed Choudhury,et al.  Tool-life prediction model by design of experiments for turning high strength steel (290 BHN) , 1998 .

[14]  M. A. El Baradie,et al.  Prediction of tool life in end milling by response surface methodology , 1997 .

[15]  Tarunraj Singh,et al.  Machining condition optimization by genetic algorithms and simulated annealing , 1997, Comput. Oper. Res..

[16]  Marc Thomas,et al.  Investigation of cutting parameter effects on surface roughness in lathe boring operation by use of a full factorial design , 1996 .

[17]  Nivaldo Lemos Coppini,et al.  Cost per piece determination in machining process: An alternative approach , 1996 .

[18]  Mansoor Alam,et al.  Evaluation of optimization methods for machining economics models , 1993, Comput. Oper. Res..

[19]  N. Bratchell,et al.  Multivariate response surface modelling by principal components analysis , 1989 .

[20]  Richard A. Johnson,et al.  Applied Multivariate Statistical Analysis , 1983 .

[21]  A. Khuri,et al.  Simultaneous Optimization of Multiple Responses Represented by Polynomial Regression Functions , 1981 .

[22]  G. Derringer,et al.  Simultaneous Optimization of Several Response Variables , 1980 .

[23]  John F. MacGregor,et al.  ASQC Chemical Division Technical Conference 1971 Prize Winning Paper Some Problems Associated with the Analysis of Multiresponse Data , 1973 .

[24]  W. S. Dorn,et al.  On Lagrange Multipliers and Inequalities , 1961 .

[25]  Yih-fong Tzeng,et al.  A hybrid approach to optimise multiple performance characteristics of high-speed computerised numerical control milling tool steels , 2007 .

[26]  Hung-Chang Liao,et al.  Multi-response optimization using weighted principal component , 2006 .

[27]  V. C. Venkatesh,et al.  Application of response surface methodology in describing the performance of coated carbide tools when turning AISI 1045 steel , 2004 .

[28]  S. Nash,et al.  Linear and Nonlinear Programming , 1987 .