Analysis and construction of cell-centered finite volume scheme for diffusion equations on distorted meshes

A finite volume scheme solving diffusion equation on non-rectangular meshes is introduced by Li [Deyuan Li, Hongshou Shui, Minjun Tang, On the finite difference scheme of two-dimensional parabolic equation in a non-rectangular mesh, J. Numer. Meth. Comput. Appl. 4 (1980) 217 (in Chinese), D.Y. Li, G.N. Chen, An Introduction to the Difference Methods for Parabolic Equation, Science Press, Beijing, 1995 (in Chinese)], which is the so-called nine-point scheme on arbitrary quadrangles. The vertex unknowns can be represented as some weighted combination of the cell-centered unknowns, but it is difficult to choose the suitable combination coefficients for the multimaterial computation on highly distorted meshes. We present a nine-point scheme for discretizing diffusion operators on distorted quadrilateral meshes, and derive a new expression for vertex unknowns. The stability and convergence of the resulting scheme are proved. We give numerical results for various test cases which exhibit the good behavior of our scheme.

[1]  J. Blair Perot,et al.  Higher-order mimetic methods for unstructured meshes , 2006, J. Comput. Phys..

[2]  Zhiqiang Sheng,et al.  Analysis of accuracy of a finite volume scheme for diffusion equations on distorted meshes , 2007, J. Comput. Phys..

[3]  Gianmarco Manzini,et al.  Mesh locking effects in the finite volume solution of 2-D anisotropic diffusion equations , 2007, J. Comput. Phys..

[4]  Pascal Omnes,et al.  A FINITE VOLUME METHOD FOR THE LAPLACE EQUATION ON ALMOST ARBITRARY TWO-DIMENSIONAL GRIDS , 2005 .

[5]  Zhiqiang Sheng,et al.  Monotone finite volume schemes for diffusion equations on polygonal meshes , 2008, J. Comput. Phys..

[6]  Enrico Bertolazzi,et al.  ON VERTEX RECONSTRUCTIONS FOR CELL-CENTERED FINITE VOLUME APPROXIMATIONS OF 2D ANISOTROPIC DIFFUSION PROBLEMS , 2007 .

[7]  Yves Coudière,et al.  CONVERGENCE RATE OF A FINITE VOLUME SCHEME FOR A TWO DIMENSIONAL CONVECTION-DIFFUSION PROBLEM , 1999 .

[8]  M. Shashkov Conservative Finite-Difference Methods on General Grids , 1996 .

[9]  Yves Coudière,et al.  Convergence rate of a finite volume scheme for the linear convection-diffusion equation on locally refined meshes , 2000 .

[10]  F. Hermeline,et al.  A Finite Volume Method for the Approximation of Diffusion Operators on Distorted Meshes , 2000 .

[11]  Zhiqiang Sheng,et al.  A Nine Point Scheme for the Approximation of Diffusion Operators on Distorted Quadrilateral Meshes , 2008, SIAM J. Sci. Comput..

[12]  Mikhail Shashkov,et al.  Solving Diffusion Equations with Rough Coefficients in Rough Grids , 1996 .

[13]  Jérôme Breil,et al.  A cell-centered diffusion scheme on two-dimensional unstructured meshes , 2007, J. Comput. Phys..

[14]  T. F. Russell,et al.  Relationships among some locally conservative discretization methods which handle discontinuous coefficients , 2004 .

[15]  Meng Wang,et al.  Analysis of stability and accuracy of finite-difference schemes on a skewed mesh , 2006, J. Comput. Phys..

[16]  Jing Wan,et al.  Enriched multi-point flux approximation for general grids , 2008, J. Comput. Phys..

[17]  Christophe Le Potier,et al.  Schéma volumes finis pour des opérateurs de diffusion fortement anisotropes sur des maillages non structurés , 2005 .

[18]  Douglas Houliston,et al.  Impulse calibration of seismometers , 1982 .

[19]  J. Blair Perot,et al.  Discrete calculus methods for diffusion , 2007, J. Comput. Phys..

[20]  D. Kershaw Differencing of the diffusion equation in Lagrangian hydrodynamic codes , 1981 .

[21]  R. Eymard,et al.  Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.