Leveraging Environmental Correlations: The Thermodynamics of Requisite Variety

Key to biological success, the requisite variety that confronts an adaptive organism is the set of detectable, accessible, and controllable states in its environment. We analyze its role in the thermodynamic functioning of information ratchets—a form of autonomous Maxwellian Demon capable of exploiting fluctuations in an external information reservoir to harvest useful work from a thermal bath. This establishes a quantitative paradigm for understanding how adaptive agents leverage structured thermal environments for their own thermodynamic benefit. General ratchets behave as memoryful communication channels, interacting with their environment sequentially and storing results to an output. The bulk of thermal ratchets analyzed to date, however, assume memoryless environments that generate input signals without temporal correlations. Employing computational mechanics and a new information-processing Second Law of Thermodynamics (IPSL) we remove these restrictions, analyzing general finite-state ratchets interacting with structured environments that generate correlated input signals. On the one hand, we demonstrate that a ratchet need not have memory to exploit an uncorrelated environment. On the other, and more appropriate to biological adaptation, we show that a ratchet must have memory to most effectively leverage structure and correlation in its environment. The lesson is that to optimally harvest work a ratchet’s memory must reflect the input generator’s memory. Finally, we investigate achieving the IPSL bounds on the amount of work a ratchet can extract from its environment, discovering that finite-state, optimal ratchets are unable to reach these bounds. In contrast, we show that infinite-state ratchets can go well beyond these bounds by utilizing their own infinite “negentropy”. We conclude with an outline of the collective thermodynamics of information-ratchet swarms.

[1]  Charles H. Bennett Demons, Engines and the Second Law , 1987 .

[2]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[3]  W. Ashby,et al.  An Introduction to Cybernetics , 1957 .

[4]  L. Rabiner,et al.  An introduction to hidden Markov models , 1986, IEEE ASSP Magazine.

[5]  J. Crutchfield The calculi of emergence: computation, dynamics and induction , 1994 .

[6]  A. N. Kolmogorov Combinatorial foundations of information theory and the calculus of probabilities , 1983 .

[7]  John Stache,et al.  Demons , Engines and the Second Law , 2008 .

[8]  W. Ashby,et al.  Design for a brain; the origin of adaptive behavior , 2011 .

[9]  Yuansheng Cao,et al.  Thermodynamics of information processing based on enzyme kinetics: An exactly solvable model of an information pump. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  N. Wiener Nonlinear Prediction and Dynamics , 1956 .

[11]  L. Brillouin Maxwell's Demon Cannot Operate: Information and Entropy. I , 1951 .

[12]  Christopher Jarzynski,et al.  Maxwell's refrigerator: an exactly solvable model. , 2013, Physical review letters.

[13]  How can an autonomous quantum Maxwell demon harness correlated information , 2016 .

[14]  Viktor Mikhaĭlovich Glushkov,et al.  An Introduction to Cybernetics , 1957, The Mathematical Gazette.

[15]  Christos H. Papadimitriou,et al.  Elements of the Theory of Computation , 1997, SIGA.

[16]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.

[17]  Norbert Wiener,et al.  Extrapolation, Interpolation, and Smoothing of Stationary Time Series , 1964 .

[18]  James P. Crutchfield,et al.  Computational Mechanics of Input-Output Processes: Structured transformations and the ε-transducer , 2014, ArXiv.

[19]  M. Meehan General System Theory: Foundations, Development, Applications , 1969 .

[20]  C. Jarzynski,et al.  Information Processing and the Second Law of Thermodynamics: An Inclusive Hamiltonian Approach. , 2013, 1308.5001.

[21]  Charles H. Bennett,et al.  The thermodynamics of computation—a review , 1982 .

[22]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[23]  Suriyanarayanan Vaikuntanathan,et al.  Nonequilibrium detailed fluctuation theorem for repeated discrete feedback. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Udo Seifert,et al.  Stochastic thermodynamics with information reservoirs. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Claude E. Shannon,et al.  Two-way Communication Channels , 1961 .

[26]  Christopher Jarzynski,et al.  Work and information processing in a solvable model of Maxwell’s demon , 2012, Proceedings of the National Academy of Sciences.

[27]  A. C. Barato,et al.  Unifying three perspectives on information processing in stochastic thermodynamics. , 2013, Physical review letters.

[28]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[29]  J. Parrondo,et al.  Lower bounds on dissipation upon coarse graining. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Ya. G. Sinai,et al.  On the Notion of Entropy of a Dynamical System , 2010 .

[31]  Eld,et al.  Identifying functional thermodynamics in autonomous Maxwellian ratchets , 2016 .

[32]  J. Glenn Brookshear,et al.  Theory of Computation: Formal Languages, Automata, and Complexity , 1989 .

[33]  A. B. Boyd,et al.  Maxwell Demon Dynamics: Deterministic Chaos, the Szilard Map, and the Intelligence of Thermodynamic Systems. , 2015, Physical review letters.

[34]  C Blomberg,et al.  Thermodynamic constraints on kinetic proofreading in biosynthetic pathways. , 1980, Biophysical journal.

[35]  Marvin Minsky,et al.  Computation : finite and infinite machines , 2016 .

[36]  James P. Crutchfield,et al.  Computational Mechanics of Input–Output Processes: Structured Transformations and the ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \ , 2014, Journal of Statistical Physics.

[37]  L. Szilard On the decrease of entropy in a thermodynamic system by the intervention of intelligent beings. , 1964, Behavioral science.

[38]  Norbert Wiener,et al.  The human use of human beings - cybernetics and society , 1988 .

[39]  Rainer Klages,et al.  Nonequilibrium statistical physics of small systems : fluctuation relations and beyond , 2013 .

[40]  J. Kemeny,et al.  Denumerable Markov chains , 1969 .

[41]  James P. Crutchfield,et al.  Computational Mechanics: Pattern and Prediction, Structure and Simplicity , 1999, ArXiv.

[42]  Gregory J. Chaitin,et al.  On the Length of Programs for Computing Finite Binary Sequences , 1966, JACM.

[43]  Aaron D. Wyner,et al.  Coding Theorems for a Discrete Source With a Fidelity CriterionInstitute of Radio Engineers, International Convention Record, vol. 7, 1959. , 1993 .

[44]  E. Robinson Cybernetics, or Control and Communication in the Animal and the Machine , 1963 .

[45]  A. Miyake,et al.  How an autonomous quantum Maxwell demon can harness correlated information. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  W. Ashby,et al.  Design for a brain: The origin of adaptive behaviour (2nd ed. rev.). , 1960 .

[47]  Claude E. Shannon,et al.  The mathematical theory of communication , 1950 .

[48]  Udo Seifert,et al.  An autonomous and reversible Maxwell's demon , 2013, 1302.3089.

[49]  M. Paternostro,et al.  More bang for your buck: Super-adiabatic quantum engines , 2013, Scientific Reports.

[50]  J. Crutchfield Between order and chaos , 2011, Nature Physics.

[51]  J. Crutchfield,et al.  Regularities unseen, randomness observed: levels of entropy convergence. , 2001, Chaos.

[52]  A. F. Brown Dark Hero of the Information Age: In Search of Norbert Wiener, the Father of Cybernetics , 2006 .

[53]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[54]  A. Rex,et al.  Maxwell's demon 2: entropy, classical and quantum information, computing , 2002 .

[55]  Neri Merhav,et al.  Sequence complexity and work extraction , 2015, ArXiv.

[56]  Masahito Ueda,et al.  Generalized Jarzynski equality under nonequilibrium feedback control. , 2009, Physical review letters.

[57]  Neri Merhav,et al.  Hidden Markov processes , 2002, IEEE Trans. Inf. Theory.

[58]  G. Alexanderson Dark hero of the information age: in search of Norbert Wiener, the father of cybernetics , 2006 .

[59]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[60]  L. Szilard über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen , 1929 .

[61]  James P. Crutchfield,et al.  Correlation-powered Information Engines and the Thermodynamics of Self-Correction , 2016, Physical review. E.

[62]  Neri Merhav Relations Between Work and Entropy Production for General Information-Driven, Finite-State Engines , 2016, ArXiv.

[63]  Joël Janin,et al.  Physical biology of the cell, Second Edition , 2013 .

[64]  John B. Moore,et al.  Hidden Markov Models: Estimation and Control , 1994 .

[65]  J. Lopreato,et al.  General system theory : foundations, development, applications , 1970 .

[66]  Zhiyue Lu,et al.  Engineering Maxwell's demon , 2014 .

[67]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[68]  L. Bertalanffy General system theory : foundations, development, applications , 1977 .