Direct observation of Cu, Zn cation disorder in Cu2ZnSnS4 solar cell absorber material using aberration corrected scanning transmission electron microscopy
暂无分享,去创建一个
Budhika G. Mendis | Douglas P. Halliday | K. Durose | J. Major | B. Mendis | D. Halliday | Ken Durose | Mervyn D Shannon | M. C. J. Goodman | Jon Major | Richard Claridge | M. Shannon | R. Claridge | M. C. Goodman
[1] Supratik Guha,et al. The path towards a high-performance solution-processed kesterite solar cell ☆ , 2011 .
[2] O. Krivanek,et al. An electron microscope for the aberration-corrected era. , 2008, Ultramicroscopy.
[3] Mowafak Al-Jassim,et al. Comparative study of the luminescence and intrinsic point defects in the kesterite Cu2ZnSnS4 and chalcopyrite Cu(In,Ga)Se2 thin films used in photovoltaic applications , 2011 .
[4] I. Olekseyuk,et al. Phase equilibria in the Cu2S–ZnS–SnS2 system , 2004 .
[5] D. Mitzi,et al. Loss mechanisms in hydrazine-processed Cu2ZnSn(Se,S)4 solar cells , 2010 .
[6] Christian Colliex,et al. Spectrum-image: The next step in EELS digital acquisition and processing , 1989 .
[7] B. Mendis. Electron beam-specimen interactions and their effect on high-angle annular dark-field imaging of dopant atoms within a crystal. , 2010, Acta crystallographica. Section A, Foundations of crystallography.
[8] Gao,et al. Parameterization of the temperature dependence of the Debye-Waller factors. , 1999, Acta crystallographica. Section A, Foundations of crystallography.
[9] A. Walsh,et al. Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II-VI and I-III-VI2 compounds , 2009 .
[10] Donald Neamen,et al. An Introduction to Semiconductor Devices , 2005 .
[11] M. Fox. Optical Properties of Solids , 2010 .
[12] H. Katagiri,et al. The Influence of the Composition Ratio on CZTS-based Thin Film Solar Cells , 2009 .
[13] Aron Walsh,et al. Crystal and electronic band structure of Cu2ZnSnX4 (X=S and Se) photovoltaic absorbers: First-principles insights , 2009 .
[14] J. Krustok,et al. Does the low-temperature Arrhenius plot of the photoluminescence intensity in CdTe point towards an erroneous activation energy? , 1997 .
[15] H. Hillhouse,et al. Earth‐Abundant Element Photovoltaics Directly from Soluble Precursors with High Yield Using a Non‐Toxic Solvent , 2011 .
[16] A. Walsh,et al. Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4 , 2010 .
[17] R. Egerton,et al. Electron Energy-Loss Spectroscopy in the Electron Microscope , 1995, Springer US.
[18] D. Sargent,et al. Crystal growth of quaternary 122464 chalcogenides by iodine vapor transport , 1967 .
[19] S. Schorr. Structural aspects of adamantine like multinary chalcogenides , 2007 .
[20] Kunihiko Tanaka,et al. Donor‐acceptor pair recombination luminescence from Cu2ZnSnS4 bulk single crystals , 2006 .
[21] S. Siebentritt,et al. Shallow defects in Cu2ZnSnS4 , 2009 .
[22] M. Tovar,et al. A neutron diffraction study of the stannite-kesterite solid solution series , 2007 .
[23] B. F. Buxton,et al. The symmetry of electron diffraction zone axis patterns , 1976, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[24] C. Jones,et al. Minority carrier diffusion length in CdTe , 1982 .
[25] M. Ferenets,et al. Thin Solid Films , 2010 .
[26] H. Nozaki,et al. Analysis of lattice site occupancy in kesterite structure of Cu2ZnSnS4 films using synchrotron radiation x-ray diffraction , 2011 .
[27] C. Persson. Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4 , 2010 .
[28] S. Schorr. The crystal structure of kesterite type compounds: A neutron and X-ray diffraction study , 2011 .
[29] P. Nellist,et al. HAADF-STEM imaging with sub-angstrom probes: a full Bloch wave analysis. , 2004, Journal of electron microscopy.
[30] J. Fuhrmann. Advanced Computing In Electron Microscopy , 2016 .
[31] Tayfun Gokmen,et al. Device characteristics of a 10.1% hydrazine‐processed Cu2ZnSn(Se,S)4 solar cell , 2012 .