Expansion-chamber muffler for impulse noise of pneumatic frictional clutch and brake in mechanical presses

A compound expansion-chamber muffler, which consists of a sound absorbing chamber and a switch valve, the chamber integrating structural features of impedance muffler and micropunch plate muffler, is proposed to diminish impulse exhaust noise of pneumatic friction clutch and pneumatic friction brake (PFC/B) in mechanical presses. The structure decreases the impulse exhaust noise of PFC/B over 30 dB(A). A one-dimensional flow model is applied to study the aerodynamic characteristics of compound exhaust process of the single acting cylinder and muffler because the exhaust time is a critical factor for application of muffler in PFC/B. The volume of sound absorbing chamber is found to be an important design parameter to minimize the exhaust resistance of pneumatic cylinder. Experiments are also conducted to validate analytical results. Then the effects of diameter of exhaust ducts and volume of muffler on the exhaust time are discussed in detail. The proposed one-dimensional computational method, which considers the coupling of air-flow field and sound field, gives satisfactory results for the preliminary design of an expansion-chamber muffler. This method has been applied to an existing model HKM3-40MN to reduce its impulse noise.