Fluid Limit Approximations of Stochastic Networks

[1]  Jacques Resing,et al.  Polling systems and multitype branching processes , 1993, Queueing Syst. Theory Appl..

[2]  Amy R. Ward,et al.  Approximating the GI/GI/1+GI Queue with a Nonlinear Drift Diffusion: Hazard Rate Scaling in Heavy Traffic , 2008, Math. Oper. Res..

[3]  F. Guillemin,et al.  A Markovian analysis of additive-increase multiplicative-decrease algorithms , 2002, Advances in Applied Probability.

[4]  J. W. Roberts,et al.  A survey on statistical bandwidth sharing , 2004, Comput. Networks.

[5]  Ward Whitt,et al.  Many-server heavy-traffic limit for queues with time-varying parameters , 2014, 1401.3933.

[6]  Eitan Altman,et al.  Control of Polling in Presence of Vacations in Heavy Traffic with Applications to Satellite and Mobile Radio Systems , 2002, SIAM J. Control. Optim..

[7]  David D. Yao,et al.  Utility-Maximizing Resource Control: Diffusion Limit and Asymptotic Optimality for a Two-Bottleneck Model , 2010, Oper. Res..

[8]  Uri Yechiali Analysis and Control of Poling Systems , 1993, Performance/SIGMETRICS Tutorials.

[9]  Michel Mandjes,et al.  Bandwidth-sharing networks under a diffusion scaling , 2009, Ann. Oper. Res..

[10]  C. Mack,et al.  THE EFFICIENCY OF N MACHINES UNI-DIRECTIONALLY PATROLLED BY ONE OPERATIVE WHEN WALKING TIME AND REPAIR TIMES ARE CONSTANTS , 1957 .

[11]  Bert Zwart,et al.  Fluid limits for an ALOHA-type model with impatient customers , 2011, Queueing Systems.

[12]  Laurent Massoulié,et al.  Bandwidth sharing: objectives and algorithms , 2002, TNET.

[13]  M. Bramson Instability of FIFO Queueing Networks , 1994 .

[14]  Aleksandr I︠A︡kovlevich Khinchin,et al.  Mathematical methods in the theory of queueing , 1969 .

[15]  Bert Zwart,et al.  Law of Large Number Limits of Limited Processor-Sharing Queues , 2009, Math. Oper. Res..

[16]  Philippe Robert Stochastic Networks and Queues , 2003 .

[17]  J. Norris,et al.  Differential equation approximations for Markov chains , 2007, 0710.3269.

[18]  D. Vere-Jones Markov Chains , 1972, Nature.

[19]  高木 英明,et al.  Analysis of polling systems , 1986 .

[20]  Ward Whitt,et al.  An overview of Brownian and non-Brownian FCLTs for the single-server queue , 2000, Queueing Syst. Theory Appl..

[21]  Serguei Foss,et al.  A stability criterion via fluid limits and its application to a polling system , 1999, Queueing Syst. Theory Appl..

[22]  B. Hajek Hitting-time and occupation-time bounds implied by drift analysis with applications , 1982, Advances in Applied Probability.

[23]  Laurent Massoulié,et al.  Bandwidth sharing and admission control for elastic traffic , 2000, Telecommun. Syst..

[24]  D. Kendall Stochastic Processes Occurring in the Theory of Queues and their Analysis by the Method of the Imbedded Markov Chain , 1953 .

[25]  Peter W. Glynn,et al.  A Diffusion Approximation for a Markovian Queue with Reneging , 2003, Queueing Syst. Theory Appl..

[26]  Robert D. van der Mei,et al.  Polling Models with Two-Stage Gated Service: Fairness Versus Efficiency , 2007, International Teletraffic Congress.

[27]  L. Massouli'e Structural properties of proportional fairness: Stability and insensitivity , 2007, 0707.4542.

[28]  Guodong Pang,et al.  Heavy-traffic limits for many-server queues with service interruptions , 2009, Queueing Syst. Theory Appl..

[29]  Ruth J. Williams,et al.  Fluid model for a data network with alpha-fair bandwidth sharing and general document size distributions : two examples of stability , 2008 .

[30]  Sem C. Borst,et al.  Bandwidth-sharing networks in overload , 2007, Perform. Evaluation.

[31]  G. Dai A Fluid-limit Model Criterion for Instability of Multiclass Queueing Networks , 1996 .

[32]  Russell Lyons,et al.  A Conceptual Proof of the Kesten-Stigum Theorem for Multi-Type Branching Processes , 1997 .

[33]  Norman Abramson,et al.  The ALOHA System-Another Alternative for Computer Communications , 1899 .

[34]  Sean P. Meyn,et al.  Duality and linear programs for stability and performance analysis of queueing networks and scheduling policies , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[35]  P. Ney GENERAL IRREDUCIBLE MARKOV CHAINS AND NON‐NEGATIVE OPERATORS (Cambridge Tracts in Mathematics, 83) , 1986 .

[36]  C. M. Place,et al.  Ordinary Differential Equations , 1982 .

[37]  Bert Zwart,et al.  Fluid Limits for Bandwidth-Sharing Networks with Rate Constraints , 2013, Math. Oper. Res..

[38]  Ruth J. Williams,et al.  Diffusion approximations for open multiclass queueing networks: sufficient conditions involving state space collapse , 1998, Queueing Syst. Theory Appl..

[39]  S. G. Foss,et al.  On the Stability of a Queueing System with Uncountably Branching Fluid Limits , 2005, Probl. Inf. Transm..

[40]  Adam Wierman,et al.  Fairness and efficiency for polling models with the k-gated service discipline , 2012, Perform. Evaluation.

[41]  Peter W. Glynn,et al.  A Diffusion Approximation for a GI/GI/1 Queue with Balking or Reneging , 2005, Queueing Syst. Theory Appl..

[42]  J. Kingman THE SINGLE SERVER QUEUE , 1970 .

[43]  A. Stolyar On the Stability of Multiclass Queueing Networks: A Relaxed SuÆcient Condition via Limiting Fluid Processes , .

[44]  Ward Whitt,et al.  An Introduction to Stochastic-Process Limits and their Application to Queues , 2002 .

[45]  Gustavo de Veciana,et al.  Stability and performance analysis of networks supporting elastic services , 2001, TNET.

[46]  Bert Zwart,et al.  An extension of the square root law of TCP , 2009, Ann. Oper. Res..

[47]  Amy R. Ward,et al.  A diffusion approximation for a generalized Jackson network with reneging , 2004 .

[48]  Gustavo de Veciana,et al.  Stability and performance analysis of networks supporting services with rate control-could the Internet be unstable? , 1999, IEEE INFOCOM '99. Conference on Computer Communications. Proceedings. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies. The Future is Now (Cat. No.99CH36320).

[49]  Bert Zwart,et al.  Limit Theorems for Markovian Bandwidth-Sharing Networks with Rate Constraints , 2014, Oper. Res..

[50]  Bert Zwart,et al.  Random Fluid Limit of an Overloaded Polling Model , 2014, Advances in Applied Probability.

[51]  David D. Yao,et al.  Heavy-Traffic Optimality of a Stochastic Network Under Utility-Maximizing Resource Allocation , 2008, Oper. Res..

[52]  Sem C. Borst,et al.  The equivalence between processor sharing and service in random order , 2003, Oper. Res. Lett..

[53]  Laurent Massoulié,et al.  Impact of fairness on Internet performance , 2001, SIGMETRICS '01.

[54]  V. Malyshev NETWORKS AND DYNAMICAL SYSTEMS , 1993 .

[55]  Robert D. van der Mei,et al.  Towards a unifying theory on branching-type polling systems in heavy traffic , 2007, Queueing Syst. Theory Appl..

[56]  Alexandre Proutière,et al.  Asymptotic Stability Region of Slotted Aloha , 2008, IEEE Transactions on Information Theory.

[57]  H. Kesten,et al.  A Limit Theorem for Multidimensional Galton-Watson Processes , 1966 .

[58]  Edward G. Coffman,et al.  Polling Systems in Heavy Traffic: A Bessel Process Limit , 1998, Math. Oper. Res..

[59]  S. Borst,et al.  Polling systems , 2006 .

[60]  William A. Massey Open networks of queues: their algebraic structure and estimating their transient behavior , 1984, Advances in Applied Probability.

[61]  A Random Multiple-Access Protocol with Spatial Interactions , 2006, Journal of Applied Probability.

[62]  K. Ramanan,et al.  Asymptotic approximations for stationary distributions of many-server queues with abandonment , 2010, 1003.3373.

[63]  Guodong Pang,et al.  Two-parameter heavy-traffic limits for infinite-server queues with dependent service times , 2013, Queueing Syst. Theory Appl..

[64]  F. Kelly,et al.  Networks of queues , 1976, Advances in Applied Probability.

[65]  Hong Chen,et al.  Discrete Flow Networks: Bottleneck Analysis and Fluid Approximations , 1991, Math. Oper. Res..

[66]  Adam Jakubowski TIGHTNESS CRITERIA FOR RANDOM MEASURES WITH APPLICATION TO THE PRINCIPLE OF CONDITIONING IN I-ULBEWT SPACES , 1988 .

[67]  Amy R. Ward Asymptotic analysis of queueing systems with reneging: A survey of results for FIFO, single class models , 2012 .

[68]  Dimitri Petritis,et al.  A Markov chain model of a polling system with parameter regeneration , 2007 .

[69]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[70]  Maury Bramson,et al.  Convergence to equilibria for fluid models of head-of-the-line proportional processor sharing queueing networks , 1996, Queueing Syst. Theory Appl..

[71]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .

[72]  P. R. Kumar,et al.  Dynamic instabilities and stabilization methods in distributed real-time scheduling of manufacturing systems , 1990 .

[73]  Laurent Massoulié,et al.  A queueing analysis of max-min fairness, proportional fairness and balanced fairness , 2006, Queueing Syst. Theory Appl..

[74]  Robert B. Cooper,et al.  Stochastic Decompositions in the M/G/1 Queue with Generalized Vacations , 1985, Oper. Res..

[75]  Hideaki Takagi,et al.  Queueing analysis of polling models: progress in 1990-1994 , 1998 .

[76]  D. Down,et al.  Stability of Queueing Networks , 1994 .

[77]  R. J. Williams,et al.  Probability and Mathematical Genetics: Heavy traffic on a controlled motorway , 2010, 1002.4591.

[78]  Ruth J. Williams,et al.  Fluid limits for networks with bandwidth sharing and general document size distributions. , 2009, 0903.0291.

[79]  Avishai Mandelbaum,et al.  Strong approximations for Markovian service networks , 1998, Queueing Syst. Theory Appl..

[80]  Mung Chiang Devavrat Shah Ao Tang Stochastic Stability Under Network Utility Maximization : General File Size Distribution , 2006 .

[81]  K F.P.,et al.  STATE SPACE COLLAPSE AND DIFFUSION APPROXIMATION FOR A NETWORK OPERATING UNDER A FAIR BANDWIDTH SHARING POLICY , 2004 .

[82]  Donald F. Towsley,et al.  Optimal scheduling policies for a class of queues with customer deadlines to the beginning of service , 1988, JACM.

[83]  J. Reed,et al.  Distribution-valued heavy-traffic limits for the G/GI/∞ queue. , 2015 .

[84]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .

[85]  John Odentrantz,et al.  Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues , 2000, Technometrics.

[86]  O. Kallenberg Random Measures , 1983 .

[87]  R. J. Williams,et al.  Fluid model for a network operating under a fair bandwidth-sharing policy , 2004, math/0407057.

[88]  D. Andrews Laws of Large Numbers for Dependent Non-Identically Distributed Random Variables , 1988, Econometric Theory.

[89]  G. F. Newell,et al.  Introduction to the Theory of Queues. , 1963 .

[90]  Jean C. Walrand,et al.  Fair end-to-end window-based congestion control , 2000, TNET.

[91]  Onno Boxma Analysis and optimization of polling systems , 1991 .

[92]  Dirk P. Kroese HEAVY TRAFFIC ANALYSIS FOR CONTINUOUS POLLING MODELS , 1995 .

[93]  Xuanming Su,et al.  Patient Choice in Kidney Allocation: The Role of the Queueing Discipline , 2004, Manuf. Serv. Oper. Manag..

[94]  S. Zachary,et al.  Loss networks , 2009, 0903.0640.

[95]  Vladimir Vatutin,et al.  Multitype Branching Processes and Some Queueing Systems , 2002 .

[96]  Ward Whitt,et al.  A Diffusion Approximation for the G/GI/n/m Queue , 2004, Oper. Res..

[97]  Aleksandr Alekseevich Borovkov,et al.  Stochastic processes in queueing theory , 1976 .

[98]  S. Asmussen,et al.  Applied Probability and Queues , 1989 .

[99]  Bert Zwart,et al.  Fluid Limit of a PS-queue with Multistage Service , 2016 .

[100]  David D. Yao,et al.  Fundamentals of Queueing Networks , 2001 .

[101]  Philippe Robert,et al.  Fluid Limits for Processor-Sharing Queues with Impatience , 2008, Math. Oper. Res..

[102]  Anthony Ephremides,et al.  Information Theory and Communication Networks: An Unconsummated Union , 1998, IEEE Trans. Inf. Theory.

[103]  Maury Bramson,et al.  State space collapse with application to heavy traffic limits for multiclass queueing networks , 1998, Queueing Syst. Theory Appl..

[104]  François Baccelli,et al.  Elements Of Queueing Theory , 1994 .

[106]  J. Dai On Positive Harris Recurrence of Multiclass Queueing Networks: A Unified Approach Via Fluid Limit Models , 1995 .