On the computational strength of pure ambient calculi

Cardelli and Gordon's calculus of Mobile Ambients has attracted widespread interest as a model of mobile computation. The standard calculus is quite rich, with a variety of operators, together with capabilities for entering, leaving and dissolving ambients. The question arises of what is a minimal Turing-complete set of constructs. Previous work has established that Turing completeness can be achieved without using communication or restriction. We show that it can be achieved merely using movement capabilities (and not dissolution). We also show that certain smaller sets of constructs are either terminating or have decidable termination.

[1]  Sergio Maffeis,et al.  On the Computational Strength of Pure Ambient Calculi , 2004, EXPRESS.

[2]  Philippe Schnoebelen,et al.  Well-structured transition systems everywhere! , 2001, Theor. Comput. Sci..

[3]  Maria Grazia Vigliotti,et al.  On Reduction Semantics for the Push and Pull Ambitent Calculus , 2002, IFIP TCS.

[4]  Zohar Manna,et al.  Proving termination with multiset orderings , 1979, CACM.

[5]  Jan A. Bergstra,et al.  Process Algebra for Synchronous Communication , 1984, Inf. Control..

[6]  J. Paris,et al.  Accessible Independence Results for Peano Arithmetic , 1982 .

[7]  Davide Sangiorgi,et al.  Extensionality and intensionality of the ambient logics , 2001, POPL '01.

[8]  Vladimiro Sassone,et al.  Typing and Subtyping Mobility in Boxed Ambients , 2002, CONCUR.

[9]  David Teller,et al.  Using ambients to control resources , 2004, International Journal of Information Security.

[10]  John C. Shepherdson,et al.  Computability of Recursive Functions , 1963, JACM.

[11]  Michele Bugliesi,et al.  Access control for mobile agents: The calculus of boxed ambients , 2004, TOPL.

[12]  Matthew Hennessy,et al.  Bisimulation congruences in safe ambients , 2002, POPL '02.

[13]  Luca Cardelli,et al.  Mobile Ambients , 1998, FoSSaCS.

[14]  Davide Sangiorgi,et al.  Separability, expressiveness, and decidability in the ambient logic , 2002, Proceedings 17th Annual IEEE Symposium on Logic in Computer Science.

[15]  Jean-Marc Talbot,et al.  When ambients cannot be opened , 2005, Theor. Comput. Sci..

[16]  Nadia Busi,et al.  On the Expressiveness of Movement in Pure Mobile Ambients , 2002, Electron. Notes Theor. Comput. Sci..

[17]  Michele Bugliesi,et al.  Communication and mobility control in boxed ambients , 2005, Inf. Comput..

[18]  Davide Sangiorgi,et al.  Controlling interference in ambients , 2000, POPL '00.

[19]  Michele Bugliesi,et al.  Communication Interference in Mobile Boxed Ambients , 2002, FSTTCS.

[20]  Maria Grazia Vigliotti,et al.  Electoral Systems in Ambient Calculi , 2004, FoSSaCS.

[21]  Pascal Zimmer On the Expressiveness of Pure Mobile Ambients , 2000, EXPRESS.

[22]  CastagnaGiuseppe,et al.  Access control for mobile agents , 2004 .

[23]  Maurizio Gabbrielli,et al.  Replication vs. Recursive Definitions in Channel Based Calculi , 2003, ICALP.

[24]  Michele Bugliesi,et al.  Boxed Ambients , 2001, TACS.

[25]  Michele Bugliesi,et al.  Information Flow Security for Boxed Ambients , 2002, F-WAN@ICALP.

[26]  Nadia Busi,et al.  On the expressive power of movement and restriction in pure mobile ambients , 2004, Theor. Comput. Sci..

[27]  Marvin Minsky,et al.  Computation : finite and infinite machines , 2016 .

[28]  Matthew Hennessy,et al.  Bisimulation Congruences in Safe Ambients (extended abstract). , 2002 .

[29]  Davide Sangiorgi,et al.  Mobile safe ambients , 2003, TOPL.

[30]  Nobuko Yoshida,et al.  A Distributed Abstract Machine for Boxed Ambient Calculi , 2004, ESOP.

[31]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[32]  Maurizio Gabbrielli,et al.  Comparing Recursion, Replication, and Iteration in Process Calculi , 2004, ICALP.

[33]  Pascal Zimmer On The Expressiveness Of Pure Safe Ambients , 2003, Math. Struct. Comput. Sci..