Three-Parameter Crystal-Structure Prediction for sp-d-Valent Compounds

We present a three-dimensional structure-map based on experimental data for compounds that contain sp-block elements and transition metals. The map predicts the correct crystal structure with a probability of 86% and has a confidence of better than 98% that the correct crystal structure is among three predicted crystal structures. The three descriptors of the structure map are physically intuitive functions of the number of valence electrons, atomic volume, and electronegativity of the constituent elements. We test the structure map against standard density-functional theory calculations for 1:1 sp-d-valent compounds and show that our three-parameter model has a comparable predictive power. We demonstrate the application of the structure map in conjunction with density-functional theory calculations.

[1]  D. G. Pettifor,et al.  A chemical scale for crystal-structure maps , 1984 .

[2]  K. Yvon,et al.  Structure stability maps for intermetallic AB5 compounds , 2003 .

[3]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[4]  D. Pettifor,et al.  Structure maps for. Pseudobinary and ternary phases , 1988 .

[5]  Ralf Drautz,et al.  TCP phase predictions in Ni-based superalloys: Structure maps revisited , 2011 .

[6]  Joannis Apostolakis,et al.  Data Mining in crystallography , 2010 .

[7]  H. Monkhorst,et al.  "Special points for Brillouin-zone integrations"—a reply , 1977 .

[8]  S. Woodley,et al.  Crystal structure prediction from first principles. , 2008, Nature materials.

[9]  Yanming Ma,et al.  Ionic high-pressure form of elemental boron , 2009, Nature.

[10]  D. Pettifor,et al.  Topologically close-packed phases in binary transition-metal compounds: matching high-throughput ab initio calculations to an empirical structure map , 2016, 1605.05188.

[11]  Mark E. Oxley,et al.  Binary, ternary and quaternary compound former/nonformer prediction via Mendeleev number , 2001 .

[12]  J. Maddox Crystals from first principles , 1988, Nature.

[13]  R. S. Mulliken Electronic Structures of Molecules XI. Electroaffinity, Molecular Orbitals and Dipole Moments , 1935 .

[14]  Krishna Rajan,et al.  Structure maps for A(I)4A(II)6(BO4)6X2 apatite compounds via data mining. , 2012, Acta crystallographica. Section B, Structural science.

[15]  D. Pettifor Structure maps in alloy design , 1990 .

[16]  P. Villars,et al.  Three-dimensional structural stability diagrams for 648 binary AB3 and 389 binary A3B5 intermetallic compounds: III , 1984 .

[17]  E. G. Rochow,et al.  A scale of electronegativity based on electrostatic force , 1958 .

[18]  R. Drautz,et al.  Topological fingerprints for intermetallic compounds for the automated classification of atomistic simulation data , 2013 .

[19]  D. Pettifor,et al.  The structures of binary compounds. I. Phenomenological structure maps , 1986 .

[20]  Beatriz Cordero,et al.  Covalent radii revisited. , 2008, Dalton transactions.

[21]  Stefano Curtarolo,et al.  Accuracy of ab initio methods in predicting the crystal structures of metals: A review of 80 binary alloys , 2005, cond-mat/0502465.

[22]  P. Villars,et al.  Atomic-environment classification of the chemical elements , 1993 .

[23]  R. Drautz,et al.  The thermal stability of topologically close-packed phases in the single-crystal Ni-base superalloy ERBO/1 , 2016, Journal of Materials Science.

[24]  M. Trömel,et al.  Metallradien und Ionenradien , 2000 .

[25]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[26]  A N Kolmogorov,et al.  Pressure-driven evolution of the covalent network in CaB6. , 2012, Physical review letters.

[27]  E. Parthé,et al.  AB compounds with ScY and rare earth metals. II. FeB and CrB structures of monosilicides and germanides , 1966 .

[28]  Wei Luo,et al.  Information-Theoretic Approach for the Discovery of Design Rules for Crystal Chemistry , 2012, J. Chem. Inf. Model..

[29]  Marco Buongiorno Nardelli,et al.  The high-throughput highway to computational materials design. , 2013, Nature materials.

[30]  Robert S. Mulliken,et al.  A New Electroaffinity Scale; Together with Data on Valence States and on Valence Ionization Potentials and Electron Affinities , 1934 .

[31]  R. Drautz,et al.  Microsegregation and precipitates of an as-cast Co-based superalloy—microstructural characterization and phase stability modelling , 2015, Journal of Materials Science.

[32]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[33]  A N Kolmogorov,et al.  New superconducting and semiconducting Fe-B compounds predicted with an ab initio evolutionary search. , 2010, Physical review letters.

[34]  A. Zunger,et al.  Diagrammatic Separation of Different Crystal Structures of A2BX4 Compounds Without Energy Minimization: A Pseudopotential Orbital Radii Approach , 2010 .

[35]  J. C. Phillips,et al.  Dielectric Classification of Crystal Structures, Ionization Potentials, and Band Structures , 1969 .

[36]  Linus Pauling,et al.  THE NATURE OF THE CHEMICAL BOND. IV. THE ENERGY OF SINGLE BONDS AND THE RELATIVE ELECTRONEGATIVITY OF ATOMS , 1932 .

[37]  Stefano Curtarolo,et al.  Structure maps for hcp metals from first-principles calculations , 2010, 1002.2822.

[38]  J. Burdett Electronic influences on the crystal chemistry of transition metal-main group MX and MX2 compounds , 1982 .

[39]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[40]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[41]  Alex Zunger,et al.  Systematization of the stable crystal structure of all AB-type binary compounds: A pseudopotential orbital-radii approach , 1980 .

[42]  Gus L. W. Hart,et al.  Hafnium binary alloys from experiments and first principles , 2009, 0907.5131.

[43]  Anubhav Jain,et al.  Finding Nature’s Missing Ternary Oxide Compounds Using Machine Learning and Density Functional Theory , 2010 .

[44]  W. B. Pearson,et al.  On the crystal chemistry of normal valence compounds , 1959 .

[45]  A. N. Kolmogorov,et al.  Stability of 41 metal - boron systems at 0 GPa and 30 GPa from first principles , 2013, 1310.4157.