Quantum Entanglement in Neural Network States

Machine learning, one of today's most rapidly growing interdisciplinary fields, promises an unprecedented perspective for solving intricate quantum many-body problems. Understanding the physical aspects of the representative artificial neural-network states is recently becoming highly desirable in the applications of machine learning techniques to quantum many-body physics. Here, we study the quantum entanglement properties of neural-network states, with a focus on the restricted-Boltzmann-machine (RBM) architecture. We prove that the entanglement of all short-range RBM states satisfies an area law for arbitrary dimensions and bipartition geometry. For long-range RBM states we show by using an exact construction that such states could exhibit volume-law entanglement, implying a notable capability of RBM in representing efficiently quantum states with massive entanglement. We further examine generic RBM states with random weight parameters. We find that their averaged entanglement entropy obeys volume-law scaling and meantime strongly deviates from the Page-entropy of the completely random pure states. We show that their entanglement spectrum has no universal part associated with random matrix theory and bears a Poisson-type level statistics. Using reinforcement learning, we demonstrate that RBM is capable of finding the ground state (with power-law entanglement) of a model Hamiltonian with long-range interaction. In addition, we show, through a concrete example of the one-dimensional symmetry-protected topological cluster states, that the RBM representation may also be used as a tool to analytically compute the entanglement spectrum. Our results uncover the unparalleled power of artificial neural networks in representing quantum many-body states, which paves a novel way to bridge computer science based machine learning techniques to outstanding quantum condensed matter physics problems.

[1]  V. Marčenko,et al.  DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES , 1967 .

[2]  D. W. Robinson,et al.  The finite group velocity of quantum spin systems , 1972 .

[3]  J. Bekenstein Black Holes and Entropy , 1973, Jacob Bekenstein.

[4]  M. Berry,et al.  Level clustering in the regular spectrum , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[5]  P. A. Mello,et al.  Random matrix physics: Spectrum and strength fluctuations , 1981 .

[6]  O. Bohigas,et al.  Characterization of chaotic quantum spectra and universality of level fluctuation laws , 1984 .

[7]  John R. Anderson,et al.  MACHINE LEARNING An Artificial Intelligence Approach , 2009 .

[8]  Lee,et al.  Quantum source of entropy for black holes. , 1986, Physical review. D, Particles and fields.

[9]  Haldane,et al.  Exact Jastrow-Gutzwiller resonating-valence-bond ground state of the spin-(1/2 antiferromagnetic Heisenberg chain with 1/r2 exchange. , 1988, Physical review letters.

[10]  Shastry,et al.  Exact solution of an S=1/2 Heisenberg antiferromagnetic chain with long-ranged interactions. , 1988, Physical review letters.

[11]  Kurt Hornik,et al.  Approximation capabilities of multilayer feedforward networks , 1991, Neural Networks.

[12]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[13]  M. Fannes,et al.  Finitely correlated states on quantum spin chains , 1992 .

[14]  Page,et al.  Average entropy of a subsystem. , 1993, Physical review letters.

[15]  Page Information in black hole radiation. , 1993, Physical review letters.

[16]  M. Srednicki,et al.  Entropy and area. , 1993, Physical review letters.

[17]  On geometric entropy , 1994, hep-th/9401072.

[18]  F. Wilczek,et al.  Geometric and renormalized entropy in conformal field theory , 1994, hep-th/9403108.

[19]  S. Hawking,et al.  DeSitter entropy, quantum entanglement and ADS/CFT , 2000, hep-th/0002145.

[20]  M. Nielsen,et al.  Entanglement in a simple quantum phase transition , 2002, quant-ph/0202162.

[21]  A. Osterloh,et al.  Scaling of entanglement close to a quantum phase transition , 2002, Nature.

[22]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.

[23]  H. Briegel,et al.  Measurement-based quantum computation on cluster states , 2003, quant-ph/0301052.

[24]  Vladimir E. Korepin,et al.  Quantum Spin Chain, Toeplitz Determinants and the Fisher—Hartwig Conjecture , 2004 .

[25]  J. Cardy,et al.  Entanglement entropy and quantum field theory , 2004, hep-th/0405152.

[26]  V. Korepin,et al.  Entanglement in the XY spin chain , 2004 .

[27]  Shi-Jian Gu,et al.  Entanglement and quantum phase transition in the extended Hubbard model. , 2004, Physical review letters.

[28]  D. Jaksch,et al.  Multipartite entanglement detection in bosons. , 2004, Physical review letters.

[29]  J. Eisert,et al.  Multiparty entanglement in graph states , 2003, quant-ph/0307130.

[30]  Entanglement in quantum spin chains, symmetry classes of random matrices, and conformal field theory. , 2005, Physical review letters.

[31]  Single-copy entanglement in critical quantum spin chains (5 pages) , 2005, quant-ph/0506250.

[32]  Entanglement across a transition to quantum chaos , 2004, quant-ph/0410246.

[33]  Paolo Zanardi,et al.  Ground state entanglement and geometric entropy in the Kitaev model , 2005 .

[34]  Bipartite entanglement and entropic boundary law in lattice spin systems (10 pages) , 2004, quant-ph/0409073.

[35]  F. Verstraete,et al.  Matrix product states represent ground states faithfully , 2005, cond-mat/0505140.

[36]  Xiao-Gang Wen,et al.  Detecting topological order in a ground state wave function. , 2005, Physical review letters.

[37]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[38]  M. Nielsen Cluster-state quantum computation , 2005, quant-ph/0504097.

[39]  John Preskill,et al.  Topological entanglement entropy. , 2005, Physical Review Letters.

[40]  Geoffrey E. Hinton,et al.  Restricted Boltzmann machines for collaborative filtering , 2007, ICML '07.

[41]  G Vidal Classical simulation of infinite-size quantum lattice systems in one spatial dimension. , 2007, Physical review letters.

[42]  Frank Verstraete,et al.  Matrix product state representations , 2006, Quantum Inf. Comput..

[43]  D. Rocca,et al.  Weak binding between two aromatic rings: feeling the van der Waals attraction by quantum Monte Carlo methods. , 2007, The Journal of chemical physics.

[44]  M. Hastings,et al.  An area law for one-dimensional quantum systems , 2007, 0705.2024.

[45]  V. Vedral,et al.  Entanglement in Many-Body Systems , 2007, quant-ph/0703044.

[46]  F. Verstraete,et al.  Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems , 2008, 0907.2796.

[47]  Nicolas Le Roux,et al.  Representational Power of Restricted Boltzmann Machines and Deep Belief Networks , 2008, Neural Computation.

[48]  Hui Li,et al.  Entanglement spectrum as a generalization of entanglement entropy: identification of topological order in non-Abelian fractional quantum Hall effect states. , 2008, Physical review letters.

[49]  A. Lefevre,et al.  Entanglement spectrum in one-dimensional systems , 2008, 0806.3059.

[50]  Yoshua Bengio,et al.  Classification using discriminative restricted Boltzmann machines , 2008, ICML '08.

[51]  G. Vidal Class of quantum many-body states that can be efficiently simulated. , 2006, Physical review letters.

[52]  Norbert Schuch,et al.  Entropy scaling and simulability by matrix product states. , 2007, Physical review letters.

[53]  Xiao-Gang Wen,et al.  Tensor-Entanglement-Filtering Renormalization Approach and Symmetry Protected Topological Order , 2009, 0903.1069.

[54]  J. Eisert,et al.  Colloquium: Area laws for the entanglement entropy , 2010 .

[55]  D. Huse,et al.  Many-body localization phase transition , 2010, 1003.2613.

[56]  L. Fidkowski Entanglement spectrum of topological insulators and superconductors. , 2009, Physical review letters.

[57]  M. R. Peterson,et al.  Entanglement Measures for Quasi-Two-Dimensional Fractional Quantum Hall States , 2011, 1105.1385.

[58]  J. Baik,et al.  The Oxford Handbook of Random Matrix Theory , 2011 .

[59]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[60]  J. Ignacio Cirac,et al.  Entanglement spectrum and boundary theories with projected entangled-pair states , 2011, 1103.3427.

[61]  Honglak Lee,et al.  An Analysis of Single-Layer Networks in Unsupervised Feature Learning , 2011, AISTATS.

[62]  N. Regnault,et al.  Bulk-edge correspondence in entanglement spectra , 2011, 1102.2218.

[63]  Xiao-Gang Wen,et al.  Symmetry-Protected Topological Orders in Interacting Bosonic Systems , 2012, Science.

[64]  B. Swingle,et al.  Entanglement Renormalization and Holography , 2009, 0905.1317.

[65]  Vlatko Vedral,et al.  Topological order in 1D Cluster state protected by symmetry , 2011, Quantum Inf. Process..

[66]  T. Osborne Hamiltonian complexity , 2011, Reports on progress in physics. Physical Society.

[67]  E. Demler,et al.  Measuring entanglement entropy of a generic many-body system with a quantum switch. , 2012, Physical review letters.

[68]  Brian Swingle,et al.  Constructing holographic spacetimes using entanglement renormalization , 2012, 1209.3304.

[69]  A. Ludwig,et al.  General relationship between the entanglement spectrum and the edge state spectrum of topological quantum states. , 2011, Physical review letters.

[70]  P. Zoller,et al.  Measuring entanglement growth in quench dynamics of bosons in an optical lattice. , 2012, Physical review letters.

[71]  Umesh Vazirani,et al.  An area law and sub-exponential algorithm for 1D systems , 2013, 1301.1162.

[72]  B. Bauer,et al.  Area laws in a many-body localized state and its implications for topological order , 2013, 1306.5753.

[73]  Roman Orus,et al.  A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States , 2013, 1306.2164.

[74]  Quantum Computation and Quantum Simulation with Atomic and Solid State Systems. , 2013 .

[75]  C. Bény Deep learning and the renormalization group , 2013, 1301.3124.

[76]  E. Bogomolny,et al.  Distribution of the ratio of consecutive level spacings in random matrix ensembles. , 2012, Physical review letters.

[77]  Claude Klöckl,et al.  The density matrix renormalization group on tensor networks , 2013 .

[78]  John J. Oh,et al.  Application of machine learning algorithms to the study of noise artifacts in gravitational-wave data , 2013, 1303.6984.

[79]  An area law for entanglement from exponential decay of correlations , 2013, 1309.3789.

[80]  Xiao-Gang Wen,et al.  Symmetry protected topological orders and the group cohomology of their symmetry group , 2011, 1106.4772.

[81]  Yichen Huang,et al.  Area law in one dimension: Degenerate ground states and Renyi entanglement entropy , 2014, 1403.0327.

[82]  J. Bardarson,et al.  Many-body localization in a disordered quantum Ising chain. , 2014, Physical review letters.

[83]  David J. Schwab,et al.  An exact mapping between the Variational Renormalization Group and Deep Learning , 2014, ArXiv.

[84]  Trapped-ion quantum simulation of tunable-range Heisenberg chains , 2014 .

[85]  Leonard Susskind,et al.  Entanglement is not enough , 2014, 1411.0690.

[86]  E. Mucciolo,et al.  Emergent irreversibility and entanglement spectrum statistics. , 2013, Physical review letters.

[87]  O. Anatole von Lilienfeld,et al.  Machine learning for many-body physics: efficient solution of dynamical mean-field theory , 2015 .

[88]  R. Nandkishore,et al.  Many-Body Localization and Thermalization in Quantum Statistical Mechanics , 2014, 1404.0686.

[89]  E. Mucciolo,et al.  Two-Component Structure in the Entanglement Spectrum of Highly Excited States. , 2015, Physical review letters.

[90]  T. Grover,et al.  Does a single eigenstate encode the full Hamiltonian , 2015, 1503.00729.

[91]  A. H. Werner,et al.  Many-Body Localization Implies that Eigenvectors are Matrix-Product States. , 2014, Physical review letters.

[92]  M. Rispoli,et al.  Measuring entanglement entropy in a quantum many-body system , 2015, Nature.

[93]  Frank Verstraete Quantum Hamiltonian complexity: Worth the wait , 2015 .

[94]  Andrea J. Liu,et al.  A structural approach to relaxation in glassy liquids , 2015, Nature Physics.

[95]  Sergei V. Kalinin,et al.  Big-deep-smart data in imaging for guiding materials design. , 2015, Nature materials.

[96]  Michael I. Jordan,et al.  Machine learning: Trends, perspectives, and prospects , 2015, Science.

[97]  Seung Woo Shin,et al.  Quantum Hamiltonian Complexity , 2014, Found. Trends Theor. Comput. Sci..

[98]  Matthew Rispoli,et al.  Quantum thermalization through entanglement in an isolated many-body system , 2016, Science.

[99]  The Ligo Scientific Collaboration,et al.  Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.

[100]  Lei Wang,et al.  Discovering phase transitions with unsupervised learning , 2016, 1606.00318.

[101]  Ivan Oseledets,et al.  Unifying time evolution and optimization with matrix product states , 2014, 1408.5056.

[102]  D. Harlow,et al.  Jerusalem Lectures on Black Holes and Quantum Information , 2014, 1409.1231.

[103]  Roger G. Melko,et al.  Learning Thermodynamics with Boltzmann Machines , 2016, ArXiv.

[104]  R. Melko,et al.  Machine Learning Phases of Strongly Correlated Fermions , 2016, Physical Review X.

[105]  David J. Schwab,et al.  Supervised Learning with Quantum-Inspired Tensor Networks , 2016, ArXiv.

[106]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[107]  Guanyu Zhu,et al.  Measurement Protocol for the Entanglement Spectrum of Cold Atoms , 2016, 1605.08624.

[108]  Yi Zhang,et al.  Triangular Quantum Loop Topography for Machine Learning , 2016 .

[109]  Frank Pollmann,et al.  Obtaining Highly Excited Eigenstates of Many-Body Localized Hamiltonians by the Density Matrix Renormalization Group Approach. , 2015, Physical review letters.

[110]  K. Aoki,et al.  Restricted Boltzmann machines for the long range Ising models , 2016, 1701.00246.

[111]  Measuring multipartite entanglement through dynamic susceptibilities , 2016 .

[112]  Roger Melko,et al.  Quantum Boltzmann Machine , 2016, 1601.02036.

[113]  Nicolas Regnault,et al.  Many-body localization and thermalization: Insights from the entanglement spectrum , 2016, 1603.00880.

[114]  M. Pasquato,et al.  Detecting intermediate mass black holes in globular clusters with machine learning , 2016, 1606.08548.

[115]  Max Tegmark,et al.  Why Does Deep and Cheap Learning Work So Well? , 2016, Journal of Statistical Physics.

[116]  Dong-Ling Deng,et al.  Exact Machine Learning Topological States , 2016 .

[117]  Norm M. Tubman,et al.  Measuring quantum entanglement, machine learning and wave function tomography: Bridging theory and experiment with the quantum gas microscope , 2016, 1609.08142.

[118]  Roger G. Melko,et al.  Machine learning phases of matter , 2016, Nature Physics.

[119]  Giacomo Torlai,et al.  Neural Decoder for Topological Codes. , 2016, Physical review letters.

[120]  S. Huber,et al.  Learning phase transitions by confusion , 2016, Nature Physics.

[121]  David A. Huse,et al.  Critical Properties of the Many-Body Localization Transition , 2016, 1607.05756.

[122]  Jacob biamonte,et al.  Quantum machine learning , 2016, Nature.

[123]  Juan Carrasquilla,et al.  Machine learning quantum phases of matter beyond the fermion sign problem , 2016, Scientific Reports.

[124]  Yang Qi,et al.  Self-learning Monte Carlo method , 2016, 1610.03137.

[125]  Matthias Troyer,et al.  Solving the quantum many-body problem with artificial neural networks , 2016, Science.

[126]  Dong-Ling Deng,et al.  Statistical bubble localization with random interactions , 2017 .

[127]  Lei Wang,et al.  Accelerate Monte Carlo Simulations with Restricted Boltzmann Machines , 2018 .

[128]  R. S-A. Gatsaeva,et al.  On the representation of continuous functions of several variables as superpositions of continuous functions of one variable and addition , 2018 .