Space Ergonomics: Analysis of Artificial Gravity Model and an Improved Proposed Model

[1]  Z. Dai,et al.  Simulated microgravity inhibits the proliferation and osteogenesis of rat bone marrow mesenchymal stem cells , 2007, Cell proliferation.

[2]  A Cogoli,et al.  Cell sensitivity to gravity. , 1984, Science.

[3]  D L Eckberg,et al.  Baroreflex modulation of sympathetic activity and sympathetic neurotransmitters in humans. , 1988, Acta physiologica Scandinavica.

[4]  W. Wilfinger,et al.  Sustained microgravity reduces intrinsic wound healing and growth factor responses in the rat , 1999, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[5]  J. D. Hunley,et al.  The problem of space travel: The rocket motor , 1995 .

[6]  Heiko Hecht,et al.  Adapting to artificial gravity (AG) at high rotational speeds. , 2002, Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology.

[7]  Gabriella Tedeschi,et al.  Protein pattern of Xenopus laevis embryos grown in simulated microgravity , 2011, Cell biology international.

[8]  M. F. Reschke,et al.  Dynamic posture analysis of Spacelab-1 crew members , 2004, Experimental Brain Research.

[9]  A. Cogoli,et al.  [Lymphocytes are sensitive to gravity]. , 1986, Die Naturwissenschaften.

[10]  James E. Oberg,et al.  Pioneering Space: Living on the Next Frontier , 1986 .

[11]  R. Fitts,et al.  Functional and structural adaptations of skeletal muscle to microgravity. , 2001, The Journal of experimental biology.

[12]  J I Leonard,et al.  Regulation of body fluid compartments during short-term spaceflight. , 1996, Journal of applied physiology.