Caenorhabditis elegans as a Model To Determine Fitness of Antibiotic-Resistant Salmonella enterica Serovar Typhimurium

ABSTRACT We used the ability of Salmonella enterica serovar Typhimurium to colonize the gut of Caenorhabditis elegans to measure the fitness costs imposed by antibiotic resistance mutations. The fitness costs determined in the nematode were similar to those measured in mice, validating its use as a simple host model to evaluate bacterial fitness.

[1]  O. Berg,et al.  Reducing the fitness cost of antibiotic resistance by amplification of initiator tRNA genes. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[2]  F. Ausubel,et al.  Caenorhabditis elegans-Based Screen Identifies Salmonella Virulence Factors Required for Conserved Host-Pathogen Interactions , 2004, Current Biology.

[3]  D. Andersson,et al.  Adaptation to the deleterious effects of antimicrobial drug resistance mutations by compensatory evolution. , 2004, Research in microbiology.

[4]  F. Baquero,et al.  Differential interactions within the Caenorhabditis elegans-Pseudomonas aeruginosa pathogenesis model. , 2003, Journal of theoretical biology.

[5]  D. Andersson,et al.  Persistence of antibiotic resistant bacteria. , 2003, Current opinion in microbiology.

[6]  B. Finlay,et al.  Virulence factors of the human opportunistic pathogen Serratia marcescens identified by in vivo screening , 2003, The EMBO journal.

[7]  F. Ausubel,et al.  Caenorhabditis elegans as a Model Host for Staphylococcus aureus Pathogenesis , 2003, Infection and Immunity.

[8]  F. Baquero,et al.  Fitness of in vitro selected Pseudomonas aeruginosa nalB and nfxB multidrug resistant mutants. , 2002, The Journal of antimicrobial chemotherapy.

[9]  Lars Liljas,et al.  Compensatory adaptation to the deleterious effect of antibiotic resistance in Salmonella typhimurium , 2002, Molecular microbiology.

[10]  J. Ewbank,et al.  Diverse Bacteria Are Pathogens of Caenorhabditis elegans , 2002, Infection and Immunity.

[11]  F. Ausubel,et al.  Caenorhabditis elegans as a host for the study of host-pathogen interactions. , 2002, Current opinion in microbiology.

[12]  O. Berg,et al.  Mutation frequency and biological cost of antibiotic resistance in Helicobacter pylori , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[13]  S. Miller,et al.  Salmonella typhimurium outer membrane remodeling: role in resistance to host innate immunity. , 2001, Microbes and infection.

[14]  F. Ausubel,et al.  A simple model host for identifying Gram-positive virulence factors , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[15]  D. Andersson,et al.  Biological cost and compensatory evolution in fusidic acid‐resistant Staphylococcus aureus , 2001, Molecular microbiology.

[16]  M G Reynolds,et al.  Compensatory evolution in rifampin-resistant Escherichia coli. , 2000, Genetics.

[17]  C. Kurz,et al.  Caenorhabditis elegans is a model host for Salmonella typhimurium , 2000, Current Biology.

[18]  F. Ausubel,et al.  Salmonella typhimurium proliferates and establishes a persistent infection in the intestine of Caenorhabditis elegans , 2000, Current Biology.

[19]  B. Levin,et al.  Compensatory mutations, antibiotic resistance and the population genetics of adaptive evolution in bacteria. , 2000, Genetics.

[20]  O. Berg,et al.  Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance. , 2000, Science.

[21]  B. Levin,et al.  The biological cost of antibiotic resistance. , 1999, Current opinion in microbiology.

[22]  D. Andersson,et al.  Virulence of antibiotic-resistant Salmonella typhimurium. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[23]  B. Levin,et al.  Adaptation to the fitness costs of antibiotic resistance in Escherichia coli , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[24]  Clifton E. Barry,et al.  Compensatory ahpC Gene Expression in Isoniazid-Resistant Mycobacterium tuberculosis , 1996, Science.

[25]  A. Liljas,et al.  The dynamic structure of EF-G studied by fusidic acid resistance and internal revertants. , 1996, Journal of molecular biology.

[26]  S. Strome,et al.  Characterization of a germ-line proliferation mutation in C. elegans. , 1992, Development.

[27]  E. Kaplan,et al.  Nonparametric Estimation from Incomplete Observations , 1958 .