One-step schemes for multiqubit GHZ states and W-class states in circuit QED

Abstract We propose two schemes to generate multiqubit GHZ states and W-class states in circuit QED. The schemes only need one step, and the operation times do not increase with the growth of the qubit number. Due to the virtual excitations of the resonator, the procedures are insensitive to the decay of the resonator. Numerical analysis shows that the schemes can be implemented with high fidelities. The schemes are suitable for large number of qubits under currently feasible circuit QED parameters.

[1]  S Osnaghi,et al.  Coherent control of an atomic collision in a cavity. , 2001, Physical review letters.

[2]  G. Guo,et al.  Efficient scheme for two-atom entanglement and quantum information processing in cavity QED , 2000, Physical review letters.

[3]  J. E. Mooij,et al.  Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits , 2007, Nature.

[4]  L. Tornberg,et al.  Proposal for generating and detecting multi-qubit GHZ states in circuit QED , 2009, 0902.0324.

[5]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[6]  Christoph Bruder,et al.  One-step multiqubit Greenberger-Horne-Zeilinger state generation in a circuit QED system , 2009, 0911.1396.

[7]  Masato Koashi,et al.  Local transformation of two einstein-podolsky-rosen photon pairs into a three-photon w state. , 2008, Physical review letters.

[8]  P. Knight,et al.  Introductory quantum optics , 2004 .

[9]  D. James,et al.  Effective Hamiltonian theory and its applications in quantum information , 2007, 0706.1090.

[10]  J. Martinis,et al.  Maximally entangling tripartite protocols for Josephson phase qubits , 2008, 0804.3159.

[11]  Alexandre Blais,et al.  Quantum information processing with circuit quantum electrodynamics , 2007 .

[12]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[13]  C. Harmans,et al.  Tuning the gap of a superconducting flux qubit. , 2008, Physical review letters.

[14]  Mei-Feng Chen,et al.  Generation of W state and GHZ state of multiple atomic ensembles via a single atom in a nonresonant cavity , 2014 .

[15]  Yu-xi Liu,et al.  Fast generation of multiparticle entangled state for flux qubits in a circle array of transmission line resonators with tunable coupling , 2012 .

[16]  M. Kim,et al.  Macroscopic Greenberger-Horne-Zeilinger and W states in flux qubits , 2007, 0705.3991.

[17]  P. Forn-Díaz,et al.  Strong coupling of a quantum oscillator to a flux qubit at its symmetry point. , 2010, Physical review letters.

[18]  Liu-Yong Cheng,et al.  Quantum state engineering with nitrogen-vacancy centers coupled to low-Q microresonator. , 2013, Optics express.

[19]  Guang-Can Guo,et al.  Scheme for the preparation of multiparticle entanglement in cavity QED , 2001, quant-ph/0105123.

[20]  T. Radtke,et al.  Generation of four-partite Greenberger-Horne-Zeilinger and W states by using a high-finesse bimodal cavity , 2008, 0802.1906.

[21]  S. Girvin,et al.  Wiring up quantum systems , 2008, Nature.

[22]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[23]  J. Gambetta,et al.  Two-qubit state tomography using a joint dispersive readout. , 2008, Physical review letters.