Marine Oil Slicks Quantification From L-band Dual-Polarization SAR Imagery

We show, using simple physical models, that a quantitative estimation of the volume fraction of marine oil slicks can be achieved from dual-polarization synthetic aperture radar (SAR) imagery. Volume fraction, which quantifies the proportion of seawater in oil in the case of a mixture, depends primarily on volume scattering mechanisms and is inferred from the polarization ratio in the L-band. A quantification algorithm is derived, namely, the volume fraction estimation algorithm that is applied to two experimental data sets acquired in the Mediterranean Sea during the POLLUPROOF’2015 exercise and in the North Sea during the NOFO’2015 experiment using the Office National d’Études et de Recherches Aérospatiales airborne L-band SETHI system. The resulting volume fraction maps of the quantification method are presented and discussed, opening new perspectives for marine oil slicks monitoring by means of dual-polarization SAR imagery.

[1]  Heinrich Hühnerfuss,et al.  On the reduction of the radar backscatter by oceanic surface films: Scatterometer measurements and their theoretical interpretation , 1998 .

[2]  Jean-Claude Romano,et al.  Sea-surface slick occurrence in the open sea (Mediterranean, Red Sea, Indian Ocean) in relation to wind speed , 1996 .

[3]  Bertrand Chapron,et al.  Importance of peakedness in sea surface slope measurements and applications , 2000 .

[4]  R. Pal Effect of droplet size on the rheology of emulsions , 1996 .

[5]  Martin Gade,et al.  Marine surface films : chemical characteristics, influence on air-sea interactions and remote sensing , 2006 .

[6]  Heinrich Hühnerfuss,et al.  Natural and man-made sea slicks in the North Sea investigated by a helicopter-borne 5-frequency radar scatterometer , 1996 .

[7]  N. Reul,et al.  Importance of the sea surface curvature to interpret the normalized radar cross section , 2007 .

[8]  Benjamin Holt,et al.  Polarimetric Analysis of Backscatter From the Deepwater Horizon Oil Spill Using L-Band Synthetic Aperture Radar , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Benjamin Holt,et al.  Oil spill detection by imaging radars: Challenges and pitfalls , 2017, 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[10]  Stephan Guignard,et al.  Local and non-local curvature approximation: a new asymptotic theory for wave scattering , 2003 .

[11]  S. Bruckenstein Physicochemical hydrodynamics , 1977, Nature.

[12]  Heinrich Hühnerfuss,et al.  Radar signatures of oil films floating on the sea surface and the Marangoni effect , 1988 .

[13]  Charles-Antoine Guérin,et al.  Separation of surface and volume effects in scattering from heterogeneous rough surfaces: derivation of a splitting rule. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[14]  Heinrich Hühnerfuss,et al.  Imaging of biogenic and anthropogenic ocean surface films by the multifrequency/multipolarization SIR‐C/X‐SAR , 1998 .

[15]  Heinrich Hühnerfuss,et al.  Wind wave tank measurements of wave damping and radar cross sections in the presence of monomolecular surface films , 1998 .

[16]  Sébastien Angélliaume,et al.  Multifrequency radar imagery and characterization of hazardous and noxious substances at sea , 2016, 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[17]  W. Alpers,et al.  The damping of ocean waves by surface films: A new look at an old problem , 1989 .

[18]  C. Guérin,et al.  A critical survey of approximate scattering wave theories from random rough surfaces , 2004 .

[19]  J. Lienhard,et al.  Erratum to Thermophysical properties of seawater: A review of existing correlations and data , 2010 .

[20]  K. Katsaros,et al.  A Unified Directional Spectrum for Long and Short Wind-Driven Waves , 1997 .

[21]  S. Ufermann,et al.  Using ERS-2 SAR images for routine observation of marine pollution in European coastal waters , 1998, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174).

[22]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[23]  S. M. Mudge,et al.  Preliminary investigations into sunflower oil contamination following the wreck of the M.V. Kimya , 1993 .

[24]  Charles-Antoine Guérin,et al.  Higher‐order statistical analysis of short wind wave fields , 2012 .

[25]  Brent Minchew,et al.  Determining the mixing of oil and sea water using polarimetric synthetic aperture radar , 2012 .

[26]  Charles-Antoine Guérin,et al.  A Cutoff Invariant Two-Scale Model in Electromagnetic Scattering From Sea Surfaces , 2008, IEEE Geoscience and Remote Sensing Letters.

[27]  Merv Fingas,et al.  Studies on water-in-oil products from crude oils and petroleum products. , 2012, Marine pollution bulletin.

[28]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[29]  Zaynab Guerraou Rétrodiffusion micro-onde par la surface océanique en incidence élevée : approche conjointe expérimentale et théorique , 2017 .

[30]  S. Rice Reflection of electromagnetic waves from slightly rough surfaces , 1951 .

[31]  A. Voronovich Small-slope approximation for electromagnetic wave scattering at a rough interface of two dielectric , 1994 .

[32]  Carl E. Brown,et al.  A Review of Oil Spill Remote Sensing , 2017, Sensors.

[33]  Torbjørn Eltoft,et al.  Comparing Near-Coincident C- and X-Band SAR Acquisitions of Marine Oil Spills , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[34]  G. Valenzuela Theories for the interaction of electromagnetic and oceanic waves — A review , 1978 .

[35]  P. Beckmann,et al.  The scattering of electromagnetic waves from rough surfaces , 1963 .

[36]  Sébastien Angélliaume,et al.  Hyperspectral and Radar Airborne Imagery over Controlled Release of Oil at Sea , 2017, Sensors.

[37]  J. Robertson Wave scattering from rough surfaces , 1995 .

[38]  Heinrich Hühnerfuss,et al.  Radar signatures of marine mineral oil spills measured by an airborne multi-frequency radar , 1998 .

[39]  P. P. Shirshov,et al.  Small-slope approximation in wave scattering by rough surfaces , 2008 .

[40]  Kjetil Folgerø,et al.  Bilinear calibration of coaxial transmission/reflection cells for permittivity measurement of low-loss liquids , 1996 .

[41]  Irena Hajnsek,et al.  Inversion of surface parameters from polarimetric SAR , 2003, IEEE Trans. Geosci. Remote. Sens..

[42]  J. Lucassen,et al.  Effect of surface-active material on the damping of gravity waves: A reappraisal , 1982 .

[43]  Charles-Antoine Guérin,et al.  Weighted curvature approximation: numerical tests for 2D dielectric surfaces , 2004 .

[44]  Xiaofeng Li,et al.  Using SAR images to delineate ocean oil slicks with a texture-classifying neural network algorithm (TCNNA) , 2009 .

[45]  Johan Sjöblom,et al.  Dilatational Elasticity Moduli of Water–Crude Oil Interfaces Using the Oscillating Pendant Drop , 2002 .

[46]  C. Marangoni,et al.  Sul principio della viscosita’ superficiale dei liquidi stabilito dalsig. J. Plateau , 1871 .

[47]  P. Lombardini,et al.  Damping effect of monolayers on surface wave motion in a liquid , 1978 .

[48]  P. Trivero,et al.  Modulation of the Spectra of Short Gravity Waves by Sea Surface Films: Slick Detection and Characterization with a Microwave Probe , 1989 .

[49]  A. Glisson,et al.  Electromagnetic mixing formulas and applications , 2000, IEEE Antennas and Propagation Magazine.

[50]  R. Garello,et al.  Operational oil-slick characterization by SAR imagery and synergistic data , 2005, IEEE Journal of Oceanic Engineering.

[51]  Bertrand Chapron,et al.  The weighted curvature approximation in scattering from sea surfaces , 2010 .

[52]  Bertrand Chapron,et al.  A simplified asymptotic theory for ocean surface electromagnetic wave scattering , 2007 .

[53]  Damien Dhont,et al.  Monitoring of natural oil seepage in the Lower Congo Basin using SAR observations , 2017 .

[54]  Tore Tjomsland,et al.  Complex permittivity of crude oils and solutions of heavy crude oil fractions , 1998 .

[55]  W. Marsden I and J , 2012 .

[56]  S. G. Salashin,et al.  Surface film effect on short wind waves , 1986 .

[57]  Maurizio Migliaccio,et al.  SAR polarimetry for sea oil slick observation , 2015 .

[58]  J. Wright A new model for sea clutter , 1968 .

[59]  Stanley J. Jacobs,et al.  Wave damping by a thin layer of viscous fluid , 1997 .

[60]  Benjamin Holt,et al.  SAR Imagery for Detecting Sea Surface Slicks: Performance Assessment of Polarization-Dependent Parameters , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[61]  Cathleen E. Jones,et al.  State of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon oil spill , 2012 .

[62]  A. Solberg,et al.  Oil spill detection by satellite remote sensing , 2005 .

[63]  A. Voronovich,et al.  Non-local small-slope approximation for wave scattering from rough surfaces , 1996 .

[64]  Anne H. Schistad Solberg,et al.  Remote Sensing of Ocean Oil-Spill Pollution , 2012, Proceedings of the IEEE.

[65]  Torbjørn Eltoft,et al.  Characterization of Marine Surface Slicks by Radarsat-2 Multipolarization Features , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[66]  Stephen M. Mudge,et al.  Deleterious effects from accidental spillages of vegetable oils , 1995 .

[67]  Thomas Meissner,et al.  The complex dielectric constant of pure and sea water from microwave satellite observations , 2004, IEEE Transactions on Geoscience and Remote Sensing.