Monocular vision avoidance method based on fully convolutional networks

Visual obstacle avoidance is a practical application of machine vision technology. With the development of unmanned and artificial intelligence, visual obstacle avoidance technology has become a research hotspot, because the avoiding obstacle is an indispensable ability for robots to explore the unknown world. The traditional methods often rely on edge detection or feature point extraction, which has poor robustness and is difficult to meet practical applications. Convolutional neural networks (CNNs) shine in a variety of machine vision problems (image classification, target detection, image segmentation, image generation, etc.), showing an obviously robustness over traditional algorithms. Based on this, this paper proposes a method to solve the task of avoiding obstacle by using the Fully convolutional networks (FCNs) to extract accessible area. This paper also proves the robustness and effectiveness of the method through a series of experiments.

[1]  Kahlouche Souhila,et al.  Optical Flow Based Robot Obstacle Avoidance , 2007 .

[2]  Rodney A. Brooks,et al.  Visually-guided obstacle avoidance in unstructured environments , 1997, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97.

[3]  Marcello R. Napolitano,et al.  A Survey of Optical Flow Techniques for Robotics Navigation Applications , 2014, J. Intell. Robotic Syst..

[4]  J. M. M. Montiel,et al.  ORB-SLAM: A Versatile and Accurate Monocular SLAM System , 2015, IEEE Transactions on Robotics.

[5]  Manuela M. Veloso,et al.  Visual sonar: fast obstacle avoidance using monocular vision , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[6]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[8]  Martin Herman,et al.  Real-time obstacle avoidance using central flow divergence and peripheral flow , 2017, Proceedings of IEEE International Conference on Computer Vision.

[9]  Roberto Cipolla,et al.  MultiNet: Real-time Joint Semantic Reasoning for Autonomous Driving , 2016, 2018 IEEE Intelligent Vehicles Symposium (IV).

[10]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.