Fast Gaussian Mixture Clustering for Skin Detection

EM is one of the popular algorithms which can be applied to skin segmentation. Due to the high computational cost of EM, traditional EM is difficult to apply to a large skin database. Inspired by the idea of subsampling, we integrate EM with incremental clustering and hierarchical clustering to estimate the parameters of mixture models. The algorithm first selects the samples by the incremental clustering approach and hierarchical clustering approach. Then, EM is applied to the sample set. The experiments show that the new EM algorithm works well in the skin database.

[1]  Anil K. Jain,et al.  Face Detection in Color Images , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[3]  Shih-Fu Chang,et al.  A highly efficient system for automatic face region detection in MPEG video , 1997, IEEE Trans. Circuits Syst. Video Technol..

[4]  Alexander H. Waibel,et al.  Segmenting hands of arbitrary color , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[5]  Markus H. Gross,et al.  Efficient simplification of point-sampled surfaces , 2002, IEEE Visualization, 2002. VIS 2002..

[6]  Tieniu Tan,et al.  Mixture clustering using multidimensional histograms for skin detection , 2004, ICPR 2004.

[7]  Abdesselam Bouzerdoum,et al.  A universal and robust human skin color model using neural networks , 2001, IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222).

[8]  Hayit Greenspan,et al.  Mixture model for face-color modeling and segmentation , 2001, Pattern Recognit. Lett..

[9]  Abdesselam Bouzerdoum,et al.  Skin segmentation using color pixel classification: analysis and comparison , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Kristin P. Bennett,et al.  Duality and Geometry in SVM Classifiers , 2000, ICML.

[11]  Tieniu Tan,et al.  Mixture clustering using multidimensional histograms for skin detection , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[12]  David J. Crisp,et al.  A Geometric Interpretation of ?-SVM Classifiers , 1999, NIPS 2000.

[13]  Chih-Jen Lin,et al.  Training v-Support Vector Classifiers: Theory and Algorithms , 2001, Neural Computation.

[14]  James M. Rehg,et al.  Statistical Color Models with Application to Skin Detection , 2004, International Journal of Computer Vision.

[15]  S. Sathiya Keerthi,et al.  A fast iterative nearest point algorithm for support vector machine classifier design , 2000, IEEE Trans. Neural Networks Learn. Syst..

[16]  John C. Platt Using Analytic QP and Sparseness to Speed Training of Support Vector Machines , 1998, NIPS.

[17]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[18]  Bernhard Schölkopf,et al.  Support Vector Method for Novelty Detection , 1999, NIPS.

[19]  Václav Hlavác,et al.  Ten Lectures on Statistical and Structural Pattern Recognition , 2002, Computational Imaging and Vision.

[20]  Sergios Theodoridis,et al.  A geometric approach to Support Vector Machine (SVM) classification , 2006, IEEE Transactions on Neural Networks.

[21]  King Ngi Ngan,et al.  Face segmentation using skin-color map in videophone applications , 1999, IEEE Trans. Circuits Syst. Video Technol..