Structural complexity and functional diversity of endoplasmic reticulum Ca2+ stores

[1]  D. Clapham,et al.  CaT1 manifests the pore properties of the calcium-release-activated calcium channel , 2001, Nature.

[2]  Alan Fine,et al.  Calcium Stores in Hippocampal Synaptic Boutons Mediate Short-Term Plasticity, Store-Operated Ca2+ Entry, and Spontaneous Transmitter Release , 2001, Neuron.

[3]  A. Tepikin,et al.  The endoplasmic reticulum as one continuous Ca2+ pool: visualization of rapid Ca2+ movements and equilibration , 2000, The EMBO journal.

[4]  T. Akita,et al.  Functional Triads Consisting of Ryanodine Receptors, Ca2+ Channels, and Ca2+-Activated K+ Channels in Bullfrog Sympathetic Neurons , 2000, The Journal of general physiology.

[5]  Ian Parker,et al.  Functional Interactions in Ca2+ Signaling over Different Time and Distance Scales , 2000, The Journal of general physiology.

[6]  G. Shull Gene knockout studies of Ca2+-transporting ATPases. , 2000, European journal of biochemistry.

[7]  T. Pozzan,et al.  The renaissance of mitochondrial calcium transport. , 2000, European journal of biochemistry.

[8]  R. Marchase,et al.  Calcium Influx Factor Directly Activates Store-operated Cation Channels in Vascular Smooth Muscle Cells* , 2000, The Journal of Biological Chemistry.

[9]  J. Putney,et al.  Signaling pathways between the plasma membrane and endoplasmic reticulum calcium stores , 2000, Cellular and Molecular Life Sciences CMLS.

[10]  M. Blaustein,et al.  Ouabain augments Ca(2+) transients in arterial smooth muscle without raising cytosolic Na(+). , 2000, American journal of physiology. Heart and circulatory physiology.

[11]  M. Blaustein,et al.  Unloading and refilling of two classes of spatially resolved endoplasmic reticulum Ca2+ stores in astrocytes , 2000, Glia.

[12]  Mark P Mattson,et al.  Calcium signaling in the ER: its role in neuronal plasticity and neurodegenerative disorders , 2000, Trends in Neurosciences.

[13]  J. Connor,et al.  Microheterogeneity of calcium signalling in dendrites , 2000, The Journal of physiology.

[14]  G. Schultz,et al.  From worm to man: three subfamilies of TRP channels , 2000, Trends in Neurosciences.

[15]  M. Berridge,et al.  The Calcium Entry Pas de Deux , 2000, Science.

[16]  E. F. Stanley,et al.  Location of calcium transporters at presynaptic terminals , 2000, The European journal of neuroscience.

[17]  K. Mikoshiba,et al.  Modulation of Ca(2+) entry by polypeptides of the inositol 1,4, 5-trisphosphate receptor (IP3R) that bind transient receptor potential (TRP): evidence for roles of TRP and IP3R in store depletion-activated Ca(2+) entry. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[18]  O. Petersen,et al.  New Ca2+-releasing messengers: are they important in the nervous system? , 1999, Trends in Neurosciences.

[19]  R. Young,et al.  Focal sarcoplasmic reticulum calcium stores and diffuse inositol 1,4,5-trisphosphate and ryanodine receptors in human myometrium. , 1999, Cell calcium.

[20]  S. Snyder,et al.  Differential cellular expression of isoforms of inositol 1,4,5‐triphosphate receptors in neurons and glia in brain , 1999, The Journal of comparative neurology.

[21]  I. Mellman,et al.  A diffusion barrier maintains distribution of membrane proteins in polarized neurons , 1999, Nature.

[22]  J. Patlak,et al.  Functional Coupling of Ryanodine Receptors to KCa Channels in Smooth Muscle Cells from Rat Cerebral Arteries , 1999, The Journal of general physiology.

[23]  M. Berridge,et al.  Characterization of Elementary Ca2+ Release Signals in NGF-Differentiated PC12 Cells and Hippocampal Neurons , 1999, Neuron.

[24]  Don-On Daniel Mak,et al.  Inositol 1,4,5-tris-phosphate activation of inositol tris-phosphate receptor Ca2+ channel by ligand tuning of Ca2+ inhibition , 1998 .

[25]  Barbara E. Ehrlich,et al.  Type III InsP3 receptor channel stays open in the presence of increased calcium , 1998, Nature.

[26]  G. Blanco,et al.  Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. , 1998, American journal of physiology. Renal physiology.

[27]  J. Meldolesi,et al.  The Heterogeneity of ER Ca2+ Stores Has a Key Role in Nonmuscle Cell Signaling and Function , 1998, The Journal of cell biology.

[28]  M. Freichel,et al.  A novel capacitative calcium entry channel expressed in excitable cells , 1998, The EMBO journal.

[29]  M. Berridge Neuronal Calcium Signaling , 1998, Neuron.

[30]  J. Russell,et al.  Characterization of ryanodine receptors in oligodendrocytes, type 2 astrocytes, and O‐2A progenitors , 1998 .

[31]  L Raeymaekers,et al.  Distribution and isoform diversity of the organellar Ca2+ pumps in the brain. , 1998, Molecular and chemical neuropathology.

[32]  P. Fossier,et al.  Cyclic ADP‐ribose and calcium‐induced calcium release regulate neurotransmitter release at a cholinergic synapse of Aplysia , 1998, The Journal of physiology.

[33]  O. Gerasimenko,et al.  The calcium store in the nuclear envelope. , 1998, Cell calcium.

[34]  C. Armstrong,et al.  Inositol trisphosphate and ryanodine receptors share a common functional Ca2+ pool in cerebellar Purkinje neurons. , 1997, Biophysical journal.

[35]  R. Leapman,et al.  Activity-Dependent Calcium Sequestration in Dendrites of Hippocampal Neurons in Brain Slices , 1997, The Journal of Neuroscience.

[36]  M. Blaustein,et al.  Distinct Distribution of Different Na+ Pump α Subunit Isoforms in Plasmalemma , 1997 .

[37]  R. Penner,et al.  Store depletion and calcium influx. , 1997, Physiological reviews.

[38]  R. Tsien,et al.  Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin , 1997, Nature.

[39]  D. Clapham,et al.  Calcium release and influx colocalize to the endoplasmic reticulum , 1997, Current Biology.

[40]  F. Protasi,et al.  Ryanodine receptors of striated muscles: a complex channel capable of multiple interactions. , 1997, Physiological reviews.

[41]  C. Ross,et al.  Comparison of Type 2 Inositol 1,4,5‐Trisphosphate Receptor Distribution and Subcellular Ca2+ Release Sites that Support Ca2+ Waves in Cultured Astrocytes , 1997, Journal of neurochemistry.

[42]  M. Blaustein,et al.  Spatially and Functionally Distinct Ca2+ Stores in Sarcoplasmic and Endoplasmic Reticulum , 1997, Science.

[43]  M. Blaustein,et al.  Na+ pump low and high ouabain affinity alpha subunit isoforms are differently distributed in cells. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[44]  K M Harris,et al.  Three-Dimensional Organization of Smooth Endoplasmic Reticulum in Hippocampal CA1 Dendrites and Dendritic Spines of the Immature and Mature Rat , 1997, The Journal of Neuroscience.

[45]  C A Ross,et al.  Inositol 1,4,5-trisphosphate receptors in endocrine cells: localization and association in hetero- and homotetramers. , 1996, Molecular biology of the cell.

[46]  M. Brini,et al.  Monitoring dynamic changes in free Ca2+ concentration in the endoplasmic reticulum of intact cells. , 1995, The EMBO journal.

[47]  R. Challiss,et al.  Neuronal Ca2+ stores: activation and function , 1995, Trends in Neurosciences.

[48]  R. Wojcikiewicz,et al.  Type I, II, and III inositol 1,4,5-trisphosphate receptors are unequally susceptible to down-regulation and are expressed in markedly different proportions in different cell types , 1995, The Journal of Biological Chemistry.

[49]  M. Barish,et al.  Inositol 1,4,5-trisphosphate and ryanodine receptor distributions and patterns of acetylcholine- and caffeine-induced calcium release in cultured mouse hippocampal neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  I. Laher,et al.  Superficial buffer barrier function of smooth muscle sarcoplasmic reticulum. , 1995, Trends in pharmacological sciences.

[51]  P. Kostyuk,et al.  Calcium stores in neurons and glia , 1994, Neuroscience.

[52]  N. Slater,et al.  Continuous network of endoplasmic reticulum in cerebellar Purkinje neurons. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[53]  J. Meldolesi,et al.  Molecular and cellular physiology of intracellular calcium stores. , 1994, Physiological reviews.

[54]  R. Coronado,et al.  Structure and function of ryanodine receptors. , 1994, The American journal of physiology.

[55]  G. Isenberg,et al.  Microheterogeneity of subsarcolemmal sodium gradients. Electron probe microanalysis in guinea‐pig ventricular myocytes. , 1993, The Journal of physiology.

[56]  A. Tashjian,et al.  Functional identification and quantitation of three intracellular calcium pools in GH4C1 cells: evidence that the caffeine-responsive pool is coupled to a thapsigargin-resistant, ATP-dependent process. , 1993, Biochemistry.

[57]  Lawrence M. Lifshitz,et al.  Coupling of the Na+/Ca2+exchanger, Na+/K+ pump and sarcoplasmic reticulum in smooth muscle , 1993, Nature.

[58]  S. Snyder,et al.  Differential immunohistochemical localization of inositol 1,4,5- trisphosphate- and ryanodine-sensitive Ca2+ release channels in rat brain , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[59]  A. Villa,et al.  Multiple/heterogeneous Ca2+ stores in cerebellum Purkinje neurons. , 1993, Comparative biochemistry and physiology. Comparative physiology.

[60]  S. Kirischuk,et al.  Spatial heterogeneity of caffeine- and inositol 1,4,5-trisphosphate-induced Ca2+ transients in isolated snail neurons , 1993, Neuroscience.

[61]  P. De Camilli,et al.  Ca2+ stores in Purkinje neurons: endoplasmic reticulum subcompartments demonstrated by the heterogeneous distribution of the InsP3 receptor, Ca(2+)-ATPase, and calsequestrin , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[62]  E. Clementi,et al.  Intracellular Ca2+ pools in PC12 cells. A unique, rapidly exchanging pool is sensitive to both inositol 1,4,5-trisphosphate and caffeine-ryanodine. , 1991, The Journal of biological chemistry.

[63]  J. Putney,et al.  The identity of the calcium-storing, inositol 1,4,5—trisphosphate-sensitive organelle in non-muscle cells: calciosome, endoplasmic reticulum … or both? , 1991, Trends in Neurosciences.

[64]  M H Ellisman,et al.  Ryanodine and inositol trisphosphate receptors coexist in avian cerebellar Purkinje neurons , 1991, The Journal of cell biology.

[65]  D. Clegg,et al.  Intracellular Ca2+ stores in chicken Purkinje neurons: differential distribution of the low affinity-high capacity Ca2+ binding protein, calsequestrin, of Ca2+ ATPase and of the ER lumenal protein, Bip , 1991, The Journal of cell biology.

[66]  M. Berridge,et al.  Bovine adrenal chromaffin cells contain an inositol 1,4,5-trisphosphate-insensitive but caffeine-sensitive Ca2+ store that can be regulated by intraluminal free Ca2+. , 1991, The Biochemical journal.

[67]  W. Lederer,et al.  Sodium-calcium exchange in excitable cells: fuzzy space. , 1990, Science.

[68]  M. Blaustein Calcium transport and buffering in neurons , 1988, Trends in Neurosciences.

[69]  R. Tsien,et al.  A new generation of Ca2+ indicators with greatly improved fluorescence properties. , 1985, The Journal of biological chemistry.

[70]  M. J. Berridge,et al.  Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate , 1983, Nature.

[71]  K. Campbell,et al.  Ultrastructural localization of calsequestrin in rat skeletal muscle by immunoferritin labeling of ultrathin frozen sections , 1983, The Journal of cell biology.

[72]  M. Henkart Identification and function of intracellular calcium stores in axons and cell bodies of neurons. , 1980, Federation proceedings.

[73]  Somlyo Av,et al.  Localization of calcium in presynaptic nerve terminals. An ultrastructural and electron microprobe analysis. , 1980 .

[74]  R. Ratzlaff,et al.  Calcium buffering in presynaptic nerve terminals. II. Kinetic properties of the nonmitochondrial Ca sequestration mechanism , 1978, The Journal of general physiology.

[75]  T. Reese,et al.  Similarity of junctions between plasma membranes and endoplasmic reticulum in muscle and neurons , 1976, The Journal of cell biology.

[76]  G. Burnstock,et al.  Junctional subsurface organs in frog sympathetic ganglion cells , 1976, Journal of neurocytology.

[77]  A. Verkhratsky,et al.  Glial calcium: homeostasis and signaling function. , 1998, Physiological reviews.

[78]  J. Meldolesi,et al.  The endoplasmic reticulum Ca2+ store: a view from the lumen. , 1998, Trends in biochemical sciences.