스트링을 이용한 전역 경로계획

The self-organizing feature map uses a randomized small valued initial weight vectors, selects the neuron whose weight vector best matches input as the winning neuron, and trains the weight vectors such that neurons within the activity bubble are moved toward the input vector. On the other hand, the modified method in this research uses a predetermined initial weight vectors of 1-dimensional string and 2-dimensional mesh, gives the systematic input vector whose position best matches obstacles, and trains the weight vectors such that neurons within the activity bubble are moved toward the input vector. According to simulation results one can conclude that the modified neural network is useful tool for the global path planning problem of a mobile robot.