The Integrated Rapid Infectious Disease Analysis (IRIDA) Platform
暂无分享,去创建一个
Cedric Chauve | Geoffrey L. Winsor | Fiona S. L. Brinkman | Robert G. Beiko | Emma Griffiths | João A. Carriço | Jennifer L. Gardy | Damion Dooley | William W. L. Hsiao | Eduardo N. Taboada | Patrick Tang | Damion M. Dooley | Dan Fornika | Eric Enns | Mélanie Courtot | Leonid Chindelevitch | Thomas Matthews | Philip Mabon | Jennifer Cabral | Pedro Feijão | Andrew G. McArthur | Judith L. Isaac-Renton | Franklin Bristow | Aaron Petkau | Josh Adam | Peter Kruczkiewicz | John Curatcha | Claire Bertelli | Ataollah Roudgar | Joel Thiessen | Alexander Keddy | Morag Graham | Gary Van Domselaar | G. Domselaar | L. Chindelevitch | Mélanie Courtot | G. Winsor | J. Gardy | F. Brinkman | M. Graham | C. Chauve | R. Beiko | João André Carriço | A. McArthur | A. Keddy | C. Bertelli | Aaron J. Petkau | Peter Kruczkiewicz | E. Taboada | P. Mabon | J. Isaac-Renton | P. Tang | E. Griffiths | W. Hsiao | F. Bristow | P. Feijão | Daniel Fornika | E. Enns | Jennifer Cabral | Cédric Chauve | Joel Thiessen | Thomas Matthews | Josh Adam | John Curatcha | Ataollah Roudgar | Pedro Feijão | Aaron Petkau
[1] Thomas Schön,et al. Epidemiological characterization of a nosocomial outbreak of extended spectrum β‐lactamase Escherichia coli ST‐131 confirms the clinical value of core genome multilocus sequence typing , 2017, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.
[2] Fiona S. L. Brinkman,et al. Genotypes Associated with Listeria monocytogenes Isolates Displaying Impaired or Enhanced Tolerances to Cold, Salt, Acid, or Desiccation Stress , 2017, Front. Microbiol..
[3] Malbert R. C. Rogers,et al. Core Genome Multilocus Sequence Typing Scheme for High-Resolution Typing of Enterococcus faecium , 2015, Journal of Clinical Microbiology.
[4] Bernadette A. Thomas,et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010 , 2012, The Lancet.
[5] Frank M. Aarestrup,et al. Rapid and Easy In Silico Serotyping of Escherichia coli Isolates by Use of Whole-Genome Sequencing Data , 2015, Journal of Clinical Microbiology.
[6] Torsten Seemann,et al. Prokka: rapid prokaryotic genome annotation , 2014, Bioinform..
[7] Matthew Walker,et al. The Validation and Implications of Using Whole Genome Sequencing as a Replacement for Traditional Serotyping for a National Salmonella Reference Laboratory , 2017, Front. Microbiol..
[8] Hannes Pouseele,et al. Implementation of Whole Genome Sequencing (WGS) for Identification and Characterization of Shiga Toxin-Producing Escherichia coli (STEC) in the United States , 2016, Front. Microbiol..
[9] I. Van Walle,et al. PulseNet International: Vision for the implementation of whole genome sequencing (WGS) for global food-borne disease surveillance , 2017, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.
[10] N. McCallum,et al. Whole genome sequencing in clinical and public health microbiology , 2015, Pathology.
[11] Raymond Lo,et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database , 2016, Nucleic Acids Res..
[12] Eduardo N. Taboada,et al. Comprehensive assessment of the quality of Salmonella whole genome sequence data available in public sequence databases using the Salmonella in silico Typing Resource (SISTR) , 2018, Microbial genomics.
[13] Eduardo N. Taboada,et al. The Salmonella In Silico Typing Resource (SISTR): An Open Web-Accessible Tool for Rapidly Typing and Subtyping Draft Salmonella Genome Assemblies , 2016, PloS one.
[14] Richard J Ellis,et al. Whole-genome sequencing for national surveillance of Shiga toxin-producing Escherichia coli O157. , 2015, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.
[15] B. Byl,et al. Pan-genome multilocus sequence typing and outbreak-specific reference-based single nucleotide polymorphism analysis to resolve two concurrent Staphylococcus aureus outbreaks in neonatal services. , 2016, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.
[16] Lars-Göran Johansson,et al. On Scientific Data , 2016 .
[17] Steven Salzberg,et al. BIOINFORMATICS ORIGINAL PAPER , 2004 .
[18] Henk C den Bakker,et al. Genomic Epidemiology: Whole-Genome-Sequencing-Powered Surveillance and Outbreak Investigation of Foodborne Bacterial Pathogens. , 2016, Annual review of food science and technology.
[19] Brian D. Ondov,et al. Mash: fast genome and metagenome distance estimation using MinHash , 2015, Genome Biology.
[20] Richard Myers,et al. SnapperDB: A database solution for routine sequencing analysis of bacterial isolates , 2017, bioRxiv.
[21] Andrew Lonie,et al. Genomics Virtual Laboratory: A Practical Bioinformatics Workbench for the Cloud , 2015, PloS one.
[22] Robert G. Beiko,et al. SNVPhyl: a single nucleotide variant phylogenomics pipeline for microbial genomic epidemiology , 2016, bioRxiv.
[23] Weida Tong,et al. Baseline Practices for the Application of Genomic Data Supporting Regulatory Food Safety. , 2017, Journal of AOAC International.
[24] Alejandro Amézquita,et al. Next generation microbiological risk assessment: opportunities of whole genome sequencing (WGS) for foodborne pathogen surveillance, source tracking and risk assessment. , 2017, International journal of food microbiology.
[25] Jianghong Meng,et al. Emerging and evolving microbial foodborne pathogens , 1998 .
[26] Bartek Wilczynski,et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics , 2009, Bioinform..
[27] F M Aarestrup,et al. Developing a framework to assess the costeffectiveness of COMPARE - a global platform for the exchange of sequence-based pathogen data. , 2017, Revue scientifique et technique.
[28] C. Carrillo,et al. Comparative Evaluation of Genomic and Laboratory Approaches for Determination of Shiga Toxin Subtypes in Escherichia coli. , 2016, Journal of food protection.
[29] G. Domselaar,et al. Usefulness of High-Quality Core Genome Single-Nucleotide Variant Analysis for Subtyping the Highly Clonal and the Most Prevalent Salmonella enterica Serovar Heidelberg Clone in the Context of Outbreak Investigations , 2015, Journal of Clinical Microbiology.
[30] Ole Lund,et al. Genotyping using whole-genome sequencing is a realistic alternative to surveillance based on phenotypic antimicrobial susceptibility testing. , 2013, The Journal of antimicrobial chemotherapy.
[31] Gabor T. Marth,et al. Haplotype-based variant detection from short-read sequencing , 2012, 1207.3907.
[32] Gary Van Domselaar,et al. A Comparative Analysis of the Lyve-SET Phylogenomics Pipeline for Genomic Epidemiology of Foodborne Pathogens , 2017, Front. Microbiol..
[33] Daniel J. Blankenberg,et al. Galaxy: a platform for interactive large-scale genome analysis. , 2005, Genome research.
[34] Neil Woodford,et al. Prediction of Phenotypic Antimicrobial Resistance Profiles From Whole Genome Sequences of Non-typhoidal Salmonella enterica , 2018, Front. Microbiol..
[35] Emma Griffiths,et al. Context Is Everything: Harmonization of Critical Food Microbiology Descriptors and Metadata for Improved Food Safety and Surveillance , 2017, Front. Microbiol..
[36] Ruth Timme,et al. Practical Value of Food Pathogen Traceability through Building a Whole-Genome Sequencing Network and Database , 2016, Journal of Clinical Microbiology.
[37] Elena A Oniciuc,et al. The Present and Future of Whole Genome Sequencing (WGS) and Whole Metagenome Sequencing (WMS) for Surveillance of Antimicrobial Resistant Microorganisms and Antimicrobial Resistance Genes across the Food Chain , 2018, Genes.
[38] Eric Fournier,et al. Impact of the choice of reference genome on the ability of the core genome SNV methodology to distinguish strains of Salmonella enterica serovar Heidelberg , 2018, PloS one.
[39] M. Schatz,et al. Big Data: Astronomical or Genomical? , 2015, PLoS biology.
[40] Ole Lund,et al. A Bacterial Analysis Platform: An Integrated System for Analysing Bacterial Whole Genome Sequencing Data for Clinical Diagnostics and Surveillance , 2016, PloS one.
[41] Sergey I. Nikolenko,et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing , 2012, J. Comput. Biol..
[42] C. Beard,et al. Whole genome multilocus sequence typing as an epidemiologic tool for Yersinia pestis. , 2016, Diagnostic microbiology and infectious disease.
[43] Matthew R. Laird,et al. IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets , 2017, Nucleic Acids Res..
[44] Ruth E. Timme,et al. Benchmark datasets for phylogenomic pipeline validation, applications for foodborne pathogen surveillance , 2017, PeerJ.
[45] Birgit Funke,et al. College of American Pathologists' laboratory standards for next-generation sequencing clinical tests. , 2015, Archives of pathology & laboratory medicine.
[46] Erik Schultes,et al. The FAIR Guiding Principles for scientific data management and stewardship , 2016, Scientific Data.
[47] Steven J. M. Jones,et al. Genomic Analysis of a Serotype 5 Streptococcus pneumoniae Outbreak in British Columbia, Canada, 2005–2009 , 2016, The Canadian journal of infectious diseases & medical microbiology = Journal canadien des maladies infectieuses et de la microbiologie medicale.
[48] Stefan Niemann,et al. Whole-Genome-Based Mycobacterium tuberculosis Surveillance: a Standardized, Portable, and Expandable Approach , 2014, Journal of Clinical Microbiology.
[49] Donovan H. Parks,et al. GenGIS 2: Geospatial Analysis of Traditional and Genetic Biodiversity, with New Gradient Algorithms and an Extensible Plugin Framework , 2013, PloS one.
[50] Olivier Bodenreider,et al. Bio-ontologies: current trends and future directions , 2006, Briefings Bioinform..
[51] Cedric Chauve,et al. MentaLiST – A fast MLST caller for large MLST schemes , 2017, bioRxiv.
[52] Michael Eisenstein,et al. Big data: The power of petabytes , 2015, Nature.
[53] Peter Ndeboc Fonkwo. Pricing infectious disease , 2008, EMBO reports.
[54] Matthew D. Whiteside,et al. Phylotyper: in silico predictor of gene subtypes , 2017, Bioinform..
[55] Alan D. Lopez,et al. The Global Burden of Disease Study , 2003 .
[56] O. Gascuel,et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. , 2010, Systematic biology.
[57] John Crandall,et al. Validation and Implementation of Clinical Laboratory Improvements Act-Compliant Whole-Genome Sequencing in the Public Health Microbiology Laboratory , 2017, Journal of Clinical Microbiology.
[58] Michael Inouye,et al. In silico serotyping of E. coli from short read data identifies limited novel O-loci but extensive diversity of O:H serotype combinations within and between pathogenic lineages , 2016, Microbial genomics.