Automatic image orientation detection

We present an algorithm for automatic image orientation estimation using a Bayesian learning framework. We demonstrate that a small codebook (the optimal size of codebook is selected using a modified MDL criterion) extracted from a learning vector quantizer (LVQ) can be used to estimate the class-conditional densities of the observed features needed for the Bayesian methodology. We further show how principal component analysis (PCA) and linear discriminant analysis (LDA) can be used as a feature extraction mechanism to remove redundancies in the high-dimensional feature vectors used for classification. The proposed method is compared with four different commonly used classifiers, namely k-nearest neighbor, support vector machine (SVM), a mixture of Gaussians, and hierarchical discriminating regression (HDR) tree. Experiments on a database of 16 344 images have shown that our proposed algorithm achieves an accuracy of approximately 98% on the training set and over 97% on an independent test set. A slight improvement in classification accuracy is achieved by employing classifier combination techniques.

[1]  Y. Chien,et al.  Pattern classification and scene analysis , 1974 .

[2]  Peter E. Hart,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[3]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[4]  Anil K. Jain,et al.  NOTE ON DISTANCE-WEIGHTED k-NEAREST NEIGHBOR RULES. , 1978 .

[5]  Anil K. Jain,et al.  39 Dimensionality and sample size considerations in pattern recognition practice , 1982, Classification, Pattern Recognition and Reduction of Dimensionality.

[6]  R. Gray,et al.  Vector quantization , 1984, IEEE ASSP Magazine.

[7]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory , 1988 .

[8]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[9]  Azriel Rosenfeld,et al.  Computer Vision , 1988, Adv. Comput..

[10]  Teuvo Kohonen,et al.  Improved versions of learning vector quantization , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[11]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[12]  Allen Gersho,et al.  Vector quantization and signal compression , 1991, The Kluwer international series in engineering and computer science.

[13]  Anil K. Jain,et al.  Texture classification and segmentation using multiresolution simultaneous autoregressive models , 1992, Pattern Recognit..

[14]  Jorma Laaksonen,et al.  LVQPAK: A software package for the correct application of Learning Vector Quantization algorithms , 1992, [Proceedings 1992] IJCNN International Joint Conference on Neural Networks.

[15]  T. Kohonen,et al.  Appendix 2.4 Stopping Rule 2.3 Fine Tuning Using the Basic Lvq1 or Lvq2.1 Lvq Pak: a Program Package for the Correct Application of Learning Vector Quantization Algorithms , 1992 .

[16]  Harry Wechsler,et al.  Automated page orientation and skew angle detection for binary document images , 1994, Pattern Recognit..

[17]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[18]  Anil K. Jain,et al.  A robust and fast skew detection algorithm for generic documents , 1996, Pattern Recognit..

[19]  Robert M. Gray,et al.  Bayes risk weighted vector quantization with posterior estimation for image compression and classification , 1996, IEEE Trans. Image Process..

[20]  Robert M. Gray,et al.  Vector quantization and density estimation , 1997, Proceedings. Compression and Complexity of SEQUENCES 1997 (Cat. No.97TB100171).

[21]  Bidyut Baran Chaudhuri,et al.  Skew Angle Detection of Digitized Indian Script Documents , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  José M. N. Leitão,et al.  Unsupervised image restoration and edge location using compound Gauss-Markov random fields and the MDL principle , 1997, IEEE Trans. Image Process..

[23]  Nuno Vasconcelos,et al.  Library-based coding: a representation for efficient video compression and retrieval , 1997, Proceedings DCC '97. Data Compression Conference.

[24]  Nuno Vasconcelos,et al.  A Bayesian framework for semantic content characterization , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[25]  Robert P. W. Duin,et al.  Bagging for linear classifiers , 1998, Pattern Recognit..

[26]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[27]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  J. C. BurgesChristopher A Tutorial on Support Vector Machines for Pattern Recognition , 1998 .

[29]  Jorma Rissanen,et al.  Stochastic Complexity in Statistical Inquiry , 1989, World Scientific Series in Computer Science.

[30]  Anil K. Jain,et al.  On image classification: city images vs. landscapes , 1998, Pattern Recognit..

[31]  Jianchang Mao,et al.  A case study on bagging, boosting and basic ensembles of neural networks for OCR , 1998, 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36227).

[32]  Anil K. Jain,et al.  Automatic image orientation detection , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).

[33]  José M. N. Leitão,et al.  On Fitting Mixture Models , 1999, EMMCVPR.

[34]  Nikos Fakotakis,et al.  Skew angle estimation in document processing using Cohen's class distributions , 1999, Pattern Recognit. Lett..

[35]  Anil K. Jain,et al.  Content-based hierarchical classification of vacation images , 1999, Proceedings IEEE International Conference on Multimedia Computing and Systems.

[36]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[37]  R. Ladner Entropy-constrained Vector Quantization , 2000 .

[38]  Anil K. Jain,et al.  Unsupervised selection and estimation of finite mixture models , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[39]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[41]  Mário A. T. Figueiredo On Gaussian radial basis function approximations: interpretation, extensions, and learning strategies , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[42]  David G. Stork,et al.  Pattern classification, 2nd Edition , 2000 .

[43]  Juyang Weng,et al.  Hierarchical Discriminant Regression , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  Robert S. Caprari Algorithm for text page up/down orientation determination , 2000, Pattern Recognit. Lett..

[45]  Anil K. Jain,et al.  Image classification for content-based indexing , 2001, IEEE Trans. Image Process..

[46]  Linda G. Shapiro,et al.  Computer Vision , 2001 .

[47]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[48]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.