How do antimicrobial peptides disrupt the lipopolysaccharide membrane leaflet of Gram-negative bacteria?

[1]  D. Spring,et al.  The multifaceted nature of antimicrobial peptides: current synthetic chemistry approaches and future directions , 2021, Chemical Society reviews.

[2]  J. Lu,et al.  Structural elucidation upon binding of antimicrobial peptides into binary mixed lipid monolayers mimicking bacterial membranes. , 2021, Journal of colloid and interface science.

[3]  J. Lu,et al.  Structural Disruptions of the Outer Membranes of Gram-Negative Bacteria by Rationally Designed Amphiphilic Antimicrobial Peptides. , 2021, ACS applied materials & interfaces.

[4]  C. Valéry,et al.  Molecular engineering of antimicrobial peptides: microbial targets, peptide motifs and translation opportunities , 2021, Biophysical Reviews.

[5]  J. Lu,et al.  How do Self-Assembling Antimicrobial Lipopeptides Kill Bacteria? , 2020, ACS applied materials & interfaces.

[6]  J. Lu,et al.  Aggregated amphiphilic antimicrobial peptides embedded in bacterial membranes. , 2020, ACS applied materials & interfaces.

[7]  R. Lund,et al.  Beyond structural models for the mode of action: How natural antimicrobial peptides affect lipid transport. , 2020, Journal of colloid and interface science.

[8]  B. Lazzaro,et al.  Antimicrobial peptides: Application informed by evolution , 2020, Science.

[9]  D. Davidson,et al.  Antimicrobial host defence peptides: functions and clinical potential , 2020, Nature Reviews Drug Discovery.

[10]  Lin Zhang,et al.  Recent advances in short peptide self-assembly: from rational design to novel applications , 2020, Current Opinion in Colloid & Interface Science.

[11]  Lin Qiu,et al.  pH-Switchable Antimicrobial Nanofiber Networks of Hydrogel Eradicate Biofilm and Rescue Stalled Healing in Chronic Wound. , 2019, ACS nano.

[12]  J. Lu,et al.  Hydrophobic Control of the Bioactivity and Cytotoxicity of de Novo Designed Antimicrobial Peptides. , 2019, ACS applied materials & interfaces.

[13]  J. Lu,et al.  Reversible Thermoresponsive Peptide-PNIPAM Hydrogels for Controlled Drug Delivery. , 2019, Biomacromolecules.

[14]  W. Wimley,et al.  Simulation-Guided Rational de Novo Design of a Small Pore-Forming Antimicrobial Peptide. , 2019, Journal of the American Chemical Society.

[15]  M. Memariani,et al.  Melittin: from honeybees to superbugs , 2019, Applied Microbiology and Biotechnology.

[16]  J. Lu,et al.  Membrane targeting cationic antimicrobial peptides. , 2019, Journal of colloid and interface science.

[17]  J. Lu,et al.  Membrane-lytic actions of sulphonated methyl ester surfactants and implications to bactericidal effect and cytotoxicity. , 2018, Journal of colloid and interface science.

[18]  J. Lakey,et al.  Liquid crystalline bacterial outer membranes are critical for antibiotic susceptibility , 2018, Proceedings of the National Academy of Sciences.

[19]  Nils A. Berglund,et al.  Structural basis for endotoxin neutralisation and anti-inflammatory activity of thrombin-derived C-terminal peptides , 2018, Nature Communications.

[20]  C. Pál,et al.  Antibiotic-resistant bacteria show widespread collateral sensitivity to antimicrobial peptides , 2018, Nature Microbiology.

[21]  Bruno F B Silva,et al.  Unravelling a Mechanism of Action for a Cecropin A-Melittin Hybrid Antimicrobial Peptide: The Induced Formation of Multilamellar Lipid Stacks. , 2018, Langmuir : the ACS journal of surfaces and colloids.

[22]  Derya Ustuner,et al.  The Anti-Inflammatory and Antioxidant Effects of Salvia officinalis on Lipopolysaccharide-Induced Inflammation in Rats. , 2017, Journal of medicinal food.

[23]  W. DeGrado,et al.  Self-assembling dipeptide antibacterial nanostructures with membrane disrupting activity , 2017, Nature Communications.

[24]  J. Lu,et al.  Influence of Acyl Chain Saturation on the Membrane-Binding Activity of a Short Antimicrobial Peptide , 2017, ACS omega.

[25]  V. Rosilio,et al.  Disruption of Asymmetric Lipid Bilayer Models Mimicking the Outer Membrane of Gram-Negative Bacteria by an Active Plasticin. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[26]  Jing Chen,et al.  Melittin-Containing Hybrid Peptide Hydrogels for Enhanced Photothermal Therapy of Glioblastoma. , 2017, ACS applied materials & interfaces.

[27]  J. Lu,et al.  Implications of lipid monolayer charge characteristics on their selective interactions with a short antimicrobial peptide. , 2017, Colloids and surfaces. B, Biointerfaces.

[28]  M. Suckow,et al.  Acceleration of diabetic wound healing using a novel protease–anti-protease combination therapy , 2015, Proceedings of the National Academy of Sciences.

[29]  Huey W. Huang,et al.  Process of inducing pores in membranes by melittin , 2013, Proceedings of the National Academy of Sciences.

[30]  B. Lin,et al.  Structural Characterization of a Model Gram-Negative Bacterial Surface Using Lipopolysaccharides from Rough Strains of Escherichia coli , 2013, Biomacromolecules.

[31]  A. Mashaghi,et al.  Lipid Nanotechnology , 2013, International journal of molecular sciences.

[32]  R. A. Campbell,et al.  FIGARO: The new horizontal neutron reflectometer at the ILL , 2011 .

[33]  J. Lu,et al.  Designed antimicrobial and antitumor peptides with high selectivity. , 2011, Biomacromolecules.

[34]  P. Horanyi,et al.  How hydrophobic molecules traverse the outer membranes of Gram-negative bacteria , 2011, Proceedings of the National Academy of Sciences.

[35]  R. Bucki,et al.  Real-time attack on single Escherichia coli cells by the human antimicrobial peptide LL-37 , 2011, Proceedings of the National Academy of Sciences.

[36]  Georg E. Fantner,et al.  Kinetics of Antimicrobial Peptide Activity Measured on Individual Bacterial Cells Using High Speed AFM , 2010, Nature nanotechnology.

[37]  A. Delcour,et al.  Outer membrane permeability and antibiotic resistance. , 2009, Biochimica et biophysica acta.

[38]  Martin Abel,et al.  In vitro binding of matrix metalloproteinase‐2 (MMP‐2), MMP‐9, and bacterial collagenase on collagenous wound dressings , 2007, Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society.

[39]  R. J. Green,et al.  Antimicrobial peptide-lipid binding interactions and binding selectivity. , 2007, Biophysical journal.

[40]  Andrew Nelson,et al.  Co-refinement of multiple-contrast neutron/X-ray reflectivity data using MOTOFIT , 2006 .

[41]  K. Brogden Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? , 2005, Nature Reviews Microbiology.

[42]  H. Nikaido Molecular Basis of Bacterial Outer Membrane Permeability Revisited , 2003, Microbiology and Molecular Biology Reviews.

[43]  H. Lehnert,et al.  Expression of matrix-metalloproteinases and their inhibitors in the wounds of diabetic and non-diabetic patients , 2002, Diabetologia.

[44]  M. Zasloff Antimicrobial peptides of multicellular organisms , 2002, Nature.

[45]  E Gratton,et al.  Lipid rafts reconstituted in model membranes. , 2001, Biophysical journal.

[46]  R. Maget-Dana The monolayer technique: a potent tool for studying the interfacial properties of antimicrobial and membrane-lytic peptides and their interactions with lipid membranes. , 1999, Biochimica et biophysica acta.

[47]  E. Dickinson,et al.  Recent advances in the study of chemical surfaces and interfaces by specular neutron reflection , 1997 .

[48]  G. Lindblom,et al.  Wild-type Escherichia coli Cells Regulate the Membrane Lipid Composition in a Window between Gel and Non-lamellar Structures (*) , 1996, The Journal of Biological Chemistry.

[49]  G. T. Barnes,et al.  Two-component monolayers. II. Surface pressure—area relations for the octadecanol—docosyl sulphate system , 1975 .

[50]  C. Galanos,et al.  A new method for the extraction of R lipopolysaccharides. , 1969, European journal of biochemistry.

[51]  R. Hancock,et al.  Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances , 2008, Nature Protocols.

[52]  C. Whitfield,et al.  Lipopolysaccharide endotoxins. , 2002, Annual review of biochemistry.